Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| import torch | |
| from transformers import BertModel, BertTokenizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased-sentence") | |
| model = BertModel.from_pretrained("DeepPavlov/rubert-base-cased-sentence") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| def filter_by_ganre(df: pd.DataFrame, ganre_list: list): | |
| filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))] | |
| filt_ind = filtered_df.index.to_list() | |
| return filt_ind | |
| # def mean_pooling(model_output, attention_mask): | |
| # token_embeddings = model_output['last_hidden_state'] | |
| # input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| # sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | |
| # sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| # return sum_embeddings / sum_mask | |
| # def recommendation(filt_ind: list, embeddings: np.array, user_text: str, n=10): | |
| # token_user_text = tokenizer(user_text, return_tensors='pt', padding='max_length', truncation=True, max_length=512) | |
| # user_embeddings = torch.Tensor().to(device) | |
| # model.to(device) | |
| # model.eval() | |
| # with torch.no_grad(): | |
| # batch = {k: v.to(device) for k, v in token_user_text.items()} | |
| # outputs = model(**batch) | |
| # user_embeddings = torch.cat([user_embeddings, mean_pooling(outputs, batch['attention_mask'])]) | |
| # user_embeddings = user_embeddings.cpu().numpy() | |
| # cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embeddings.reshape(1, -1)) | |
| # df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False) | |
| # dict_topn = df_res.iloc[:n, :].cos_sim.to_dict() | |
| # return dict_topn | |
| def embed_user(filt_ind: list, embeddings:np.array, user_text: str, n=10): | |
| tokens = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True).to(device) | |
| model.to(device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**tokens) | |
| user_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy().reshape(1, -1) | |
| return user_embedding | |
| # cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embedding.reshape(1, -1)) | |
| # df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False) | |
| # dict_topn = df_res.iloc[:n, :].cos_sim.to_dict() | |
| # return dict_topn |