Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,12 +12,11 @@ import edge_tts
|
|
| 12 |
import asyncio
|
| 13 |
import librosa
|
| 14 |
import traceback
|
| 15 |
-
import
|
| 16 |
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
|
| 17 |
from pedalboard.io import AudioFile
|
| 18 |
from pydub import AudioSegment
|
| 19 |
import noisereduce as nr
|
| 20 |
-
import numpy as np
|
| 21 |
|
| 22 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
| 23 |
|
|
@@ -32,7 +31,7 @@ PITCH_ALGO_OPT = [
|
|
| 32 |
"harvest",
|
| 33 |
"crepe",
|
| 34 |
"rmvpe",
|
| 35 |
-
"rmvpe+"
|
| 36 |
]
|
| 37 |
|
| 38 |
|
|
@@ -137,43 +136,71 @@ def add_audio_effects(audio_list):
|
|
| 137 |
|
| 138 |
|
| 139 |
def apply_noisereduce(audio_list):
|
| 140 |
-
# https://github.com/
|
| 141 |
-
print("
|
| 142 |
|
| 143 |
result = []
|
| 144 |
for audio_path in audio_list:
|
| 145 |
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
|
| 146 |
-
|
| 147 |
try:
|
| 148 |
# Load audio file
|
| 149 |
audio = AudioSegment.from_file(audio_path)
|
| 150 |
-
|
| 151 |
# Convert audio to numpy array
|
| 152 |
samples = np.array(audio.get_array_of_samples())
|
| 153 |
-
|
| 154 |
# Reduce noise
|
| 155 |
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
|
| 156 |
-
|
| 157 |
# Convert reduced noise signal back to audio
|
| 158 |
reduced_audio = AudioSegment(
|
| 159 |
-
reduced_noise.tobytes(),
|
| 160 |
-
frame_rate=audio.frame_rate,
|
| 161 |
sample_width=audio.sample_width,
|
| 162 |
channels=audio.channels
|
| 163 |
)
|
| 164 |
-
|
| 165 |
# Save reduced audio to file
|
| 166 |
reduced_audio.export(out_path, format="wav")
|
| 167 |
result.append(out_path)
|
| 168 |
-
|
| 169 |
except Exception as e:
|
| 170 |
traceback.print_exc()
|
| 171 |
-
print(f"Error
|
| 172 |
result.append(audio_path)
|
| 173 |
|
| 174 |
return result
|
| 175 |
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
@spaces.GPU()
|
| 178 |
def convert_now(audio_files, random_tag, converter):
|
| 179 |
return converter(
|
|
@@ -196,10 +223,11 @@ def run(
|
|
| 196 |
c_b_p,
|
| 197 |
active_noise_reduce,
|
| 198 |
audio_effects,
|
|
|
|
| 199 |
):
|
| 200 |
if not audio_files:
|
| 201 |
-
raise ValueError("
|
| 202 |
-
|
| 203 |
if isinstance(audio_files, str):
|
| 204 |
audio_files = [audio_files]
|
| 205 |
|
|
@@ -207,7 +235,7 @@ def run(
|
|
| 207 |
file_m, file_index = find_my_model(file_m, file_index)
|
| 208 |
print(file_m, file_index)
|
| 209 |
|
| 210 |
-
random_tag = "USER_"+str(random.randint(10000000, 99999999))
|
| 211 |
|
| 212 |
converter.apply_conf(
|
| 213 |
tag=random_tag,
|
|
@@ -219,18 +247,23 @@ def run(
|
|
| 219 |
respiration_median_filtering=r_m_f,
|
| 220 |
envelope_ratio=e_r,
|
| 221 |
consonant_breath_protection=c_b_p,
|
| 222 |
-
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
| 223 |
)
|
| 224 |
time.sleep(0.1)
|
| 225 |
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
if active_noise_reduce:
|
| 229 |
result = apply_noisereduce(result)
|
| 230 |
|
| 231 |
if audio_effects:
|
| 232 |
result = add_audio_effects(result)
|
| 233 |
-
|
| 234 |
return result
|
| 235 |
|
| 236 |
|
|
@@ -340,15 +373,19 @@ def active_tts_conf():
|
|
| 340 |
return gr.Checkbox(
|
| 341 |
False,
|
| 342 |
label="TTS",
|
| 343 |
-
# info="",
|
| 344 |
container=False,
|
| 345 |
)
|
| 346 |
|
| 347 |
|
| 348 |
def tts_voice_conf():
|
| 349 |
return gr.Dropdown(
|
| 350 |
-
label="
|
| 351 |
-
choices=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
visible=False,
|
| 353 |
value="en-US-EmmaMultilingualNeural-Female",
|
| 354 |
)
|
|
@@ -371,12 +408,11 @@ def tts_button_conf():
|
|
| 371 |
visible=False,
|
| 372 |
)
|
| 373 |
|
| 374 |
-
|
| 375 |
def tts_play_conf():
|
| 376 |
return gr.Checkbox(
|
| 377 |
False,
|
| 378 |
label="Play",
|
| 379 |
-
# info="",
|
| 380 |
container=False,
|
| 381 |
visible=False,
|
| 382 |
)
|
|
@@ -386,7 +422,6 @@ def sound_gui():
|
|
| 386 |
return gr.Audio(
|
| 387 |
value=None,
|
| 388 |
type="filepath",
|
| 389 |
-
# format="mp3",
|
| 390 |
autoplay=True,
|
| 391 |
visible=False,
|
| 392 |
)
|
|
@@ -396,7 +431,6 @@ def denoise_conf():
|
|
| 396 |
return gr.Checkbox(
|
| 397 |
False,
|
| 398 |
label="Denoise",
|
| 399 |
-
# info="",
|
| 400 |
container=False,
|
| 401 |
visible=True,
|
| 402 |
)
|
|
@@ -406,7 +440,6 @@ def effects_conf():
|
|
| 406 |
return gr.Checkbox(
|
| 407 |
False,
|
| 408 |
label="Effects",
|
| 409 |
-
# info="",
|
| 410 |
container=False,
|
| 411 |
visible=True,
|
| 412 |
)
|
|
@@ -414,12 +447,12 @@ def effects_conf():
|
|
| 414 |
|
| 415 |
def infer_tts_audio(tts_voice, tts_text, play_tts):
|
| 416 |
out_dir = "output"
|
| 417 |
-
folder_tts = "USER_"+str(random.randint(10000, 99999))
|
| 418 |
-
|
| 419 |
os.makedirs(out_dir, exist_ok=True)
|
| 420 |
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
|
| 421 |
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
|
| 422 |
-
|
| 423 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
|
| 424 |
if play_tts:
|
| 425 |
return [out_path], out_path
|
|
@@ -437,7 +470,7 @@ def show_components_tts(value_active):
|
|
| 437 |
visible=value_active
|
| 438 |
)
|
| 439 |
|
| 440 |
-
|
| 441 |
def get_gui(theme):
|
| 442 |
with gr.Blocks(theme=theme) as app:
|
| 443 |
gr.Markdown(title)
|
|
@@ -482,70 +515,12 @@ def get_gui(theme):
|
|
| 482 |
res_fc = respiration_filter_conf()
|
| 483 |
envel_r = envelope_ratio_conf()
|
| 484 |
const = consonant_protec_conf()
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
effects_gui = effects_conf()
|
| 490 |
-
button_base = button_conf()
|
| 491 |
-
output_base = output_conf()
|
| 492 |
-
|
| 493 |
-
button_base.click(
|
| 494 |
-
run,
|
| 495 |
-
inputs=[
|
| 496 |
-
aud,
|
| 497 |
-
model,
|
| 498 |
-
algo,
|
| 499 |
-
algo_lvl,
|
| 500 |
-
indx,
|
| 501 |
-
indx_inf,
|
| 502 |
-
res_fc,
|
| 503 |
-
envel_r,
|
| 504 |
-
const,
|
| 505 |
-
denoise_gui,
|
| 506 |
-
effects_gui,
|
| 507 |
-
],
|
| 508 |
-
outputs=[output_base],
|
| 509 |
-
)
|
| 510 |
|
| 511 |
-
|
| 512 |
-
gr.Examples(
|
| 513 |
-
examples=[
|
| 514 |
-
[
|
| 515 |
-
["./test.ogg"],
|
| 516 |
-
"./model.pth",
|
| 517 |
-
"rmvpe+",
|
| 518 |
-
0,
|
| 519 |
-
"./model.index",
|
| 520 |
-
0.75,
|
| 521 |
-
3,
|
| 522 |
-
0.25,
|
| 523 |
-
0.50,
|
| 524 |
-
],
|
| 525 |
-
[
|
| 526 |
-
["./example2/test2.ogg"],
|
| 527 |
-
"./example2/model_link.txt",
|
| 528 |
-
"rmvpe+",
|
| 529 |
-
0,
|
| 530 |
-
"./example2/index_link.txt",
|
| 531 |
-
0.75,
|
| 532 |
-
3,
|
| 533 |
-
0.25,
|
| 534 |
-
0.50,
|
| 535 |
-
],
|
| 536 |
-
[
|
| 537 |
-
["./example3/test3.wav"],
|
| 538 |
-
"./example3/zip_link.txt",
|
| 539 |
-
"rmvpe+",
|
| 540 |
-
0,
|
| 541 |
-
None,
|
| 542 |
-
0.75,
|
| 543 |
-
3,
|
| 544 |
-
0.25,
|
| 545 |
-
0.50,
|
| 546 |
-
],
|
| 547 |
-
|
| 548 |
-
],
|
| 549 |
fn=run,
|
| 550 |
inputs=[
|
| 551 |
aud,
|
|
@@ -557,27 +532,12 @@ def get_gui(theme):
|
|
| 557 |
res_fc,
|
| 558 |
envel_r,
|
| 559 |
const,
|
|
|
|
|
|
|
| 560 |
],
|
| 561 |
-
outputs=[
|
| 562 |
-
cache_examples=False,
|
| 563 |
)
|
| 564 |
|
| 565 |
-
|
| 566 |
-
|
| 567 |
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
|
| 571 |
-
voices = sorted([f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list])
|
| 572 |
-
|
| 573 |
-
app = get_gui(theme)
|
| 574 |
-
|
| 575 |
-
app.queue(default_concurrency_limit=40)
|
| 576 |
-
|
| 577 |
-
app.launch(
|
| 578 |
-
max_threads=40,
|
| 579 |
-
share=False,
|
| 580 |
-
show_error=True,
|
| 581 |
-
quiet=False,
|
| 582 |
-
debug=False,
|
| 583 |
-
)
|
|
|
|
| 12 |
import asyncio
|
| 13 |
import librosa
|
| 14 |
import traceback
|
| 15 |
+
import numpy as np
|
| 16 |
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
|
| 17 |
from pedalboard.io import AudioFile
|
| 18 |
from pydub import AudioSegment
|
| 19 |
import noisereduce as nr
|
|
|
|
| 20 |
|
| 21 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
| 22 |
|
|
|
|
| 31 |
"harvest",
|
| 32 |
"crepe",
|
| 33 |
"rmvpe",
|
| 34 |
+
"rmvpe+"
|
| 35 |
]
|
| 36 |
|
| 37 |
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
def apply_noisereduce(audio_list):
|
| 139 |
+
# https://github.com/saif/Audio-Denoiser
|
| 140 |
+
print("Noise reduction")
|
| 141 |
|
| 142 |
result = []
|
| 143 |
for audio_path in audio_list:
|
| 144 |
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
|
| 145 |
+
|
| 146 |
try:
|
| 147 |
# Load audio file
|
| 148 |
audio = AudioSegment.from_file(audio_path)
|
| 149 |
+
|
| 150 |
# Convert audio to numpy array
|
| 151 |
samples = np.array(audio.get_array_of_samples())
|
| 152 |
+
|
| 153 |
# Reduce noise
|
| 154 |
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
|
| 155 |
+
|
| 156 |
# Convert reduced noise signal back to audio
|
| 157 |
reduced_audio = AudioSegment(
|
| 158 |
+
reduced_noise.tobytes(),
|
| 159 |
+
frame_rate=audio.frame_rate,
|
| 160 |
sample_width=audio.sample_width,
|
| 161 |
channels=audio.channels
|
| 162 |
)
|
| 163 |
+
|
| 164 |
# Save reduced audio to file
|
| 165 |
reduced_audio.export(out_path, format="wav")
|
| 166 |
result.append(out_path)
|
| 167 |
+
|
| 168 |
except Exception as e:
|
| 169 |
traceback.print_exc()
|
| 170 |
+
print(f"Error in noise reduction: {str(e)}")
|
| 171 |
result.append(audio_path)
|
| 172 |
|
| 173 |
return result
|
| 174 |
|
| 175 |
|
| 176 |
+
def split_audio_into_chunks(audio_file, chunk_length_ms=30000):
|
| 177 |
+
"""
|
| 178 |
+
Splits an audio file into smaller chunks.
|
| 179 |
+
:param audio_file: Path to the input audio file.
|
| 180 |
+
:param chunk_length_ms: Length of each chunk in milliseconds (default is 30 seconds).
|
| 181 |
+
:return: List of chunk file paths.
|
| 182 |
+
"""
|
| 183 |
+
try:
|
| 184 |
+
audio = AudioSegment.from_file(audio_file)
|
| 185 |
+
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
| 186 |
+
chunk_paths = []
|
| 187 |
+
|
| 188 |
+
base_name = os.path.splitext(os.path.basename(audio_file))[0]
|
| 189 |
+
output_dir = os.path.join(os.path.dirname(audio_file), f"{base_name}_chunks")
|
| 190 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 191 |
+
|
| 192 |
+
for index, chunk in enumerate(chunks):
|
| 193 |
+
chunk_path = os.path.join(output_dir, f"{base_name}_chunk_{index + 1}.wav")
|
| 194 |
+
chunk.export(chunk_path, format="wav")
|
| 195 |
+
chunk_paths.append(chunk_path)
|
| 196 |
+
|
| 197 |
+
return chunk_paths
|
| 198 |
+
except Exception as e:
|
| 199 |
+
traceback.print_exc()
|
| 200 |
+
print(f"Error splitting audio into chunks: {str(e)}")
|
| 201 |
+
return [audio_file]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
@spaces.GPU()
|
| 205 |
def convert_now(audio_files, random_tag, converter):
|
| 206 |
return converter(
|
|
|
|
| 223 |
c_b_p,
|
| 224 |
active_noise_reduce,
|
| 225 |
audio_effects,
|
| 226 |
+
chunk_length_ms=30000
|
| 227 |
):
|
| 228 |
if not audio_files:
|
| 229 |
+
raise ValueError("Please provide audio files")
|
| 230 |
+
|
| 231 |
if isinstance(audio_files, str):
|
| 232 |
audio_files = [audio_files]
|
| 233 |
|
|
|
|
| 235 |
file_m, file_index = find_my_model(file_m, file_index)
|
| 236 |
print(file_m, file_index)
|
| 237 |
|
| 238 |
+
random_tag = "USER_" + str(random.randint(10000000, 99999999))
|
| 239 |
|
| 240 |
converter.apply_conf(
|
| 241 |
tag=random_tag,
|
|
|
|
| 247 |
respiration_median_filtering=r_m_f,
|
| 248 |
envelope_ratio=e_r,
|
| 249 |
consonant_breath_protection=c_b_p,
|
| 250 |
+
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
| 251 |
)
|
| 252 |
time.sleep(0.1)
|
| 253 |
|
| 254 |
+
# Split each audio file into chunks
|
| 255 |
+
chunked_audio_files = []
|
| 256 |
+
for audio_file in audio_files:
|
| 257 |
+
chunked_audio_files.extend(split_audio_into_chunks(audio_file, chunk_length_ms))
|
| 258 |
+
|
| 259 |
+
result = convert_now(chunked_audio_files, random_tag, converter)
|
| 260 |
|
| 261 |
if active_noise_reduce:
|
| 262 |
result = apply_noisereduce(result)
|
| 263 |
|
| 264 |
if audio_effects:
|
| 265 |
result = add_audio_effects(result)
|
| 266 |
+
|
| 267 |
return result
|
| 268 |
|
| 269 |
|
|
|
|
| 373 |
return gr.Checkbox(
|
| 374 |
False,
|
| 375 |
label="TTS",
|
|
|
|
| 376 |
container=False,
|
| 377 |
)
|
| 378 |
|
| 379 |
|
| 380 |
def tts_voice_conf():
|
| 381 |
return gr.Dropdown(
|
| 382 |
+
label="TTS Voice",
|
| 383 |
+
choices=[
|
| 384 |
+
"en-US-EmmaMultilingualNeural-Female",
|
| 385 |
+
"en-US-GuyMultilingualNeural-Male",
|
| 386 |
+
"en-GB-SoniaNeural-Female",
|
| 387 |
+
"fr-FR-DeniseNeural-Female"
|
| 388 |
+
],
|
| 389 |
visible=False,
|
| 390 |
value="en-US-EmmaMultilingualNeural-Female",
|
| 391 |
)
|
|
|
|
| 408 |
visible=False,
|
| 409 |
)
|
| 410 |
|
| 411 |
+
|
| 412 |
def tts_play_conf():
|
| 413 |
return gr.Checkbox(
|
| 414 |
False,
|
| 415 |
label="Play",
|
|
|
|
| 416 |
container=False,
|
| 417 |
visible=False,
|
| 418 |
)
|
|
|
|
| 422 |
return gr.Audio(
|
| 423 |
value=None,
|
| 424 |
type="filepath",
|
|
|
|
| 425 |
autoplay=True,
|
| 426 |
visible=False,
|
| 427 |
)
|
|
|
|
| 431 |
return gr.Checkbox(
|
| 432 |
False,
|
| 433 |
label="Denoise",
|
|
|
|
| 434 |
container=False,
|
| 435 |
visible=True,
|
| 436 |
)
|
|
|
|
| 440 |
return gr.Checkbox(
|
| 441 |
False,
|
| 442 |
label="Effects",
|
|
|
|
| 443 |
container=False,
|
| 444 |
visible=True,
|
| 445 |
)
|
|
|
|
| 447 |
|
| 448 |
def infer_tts_audio(tts_voice, tts_text, play_tts):
|
| 449 |
out_dir = "output"
|
| 450 |
+
folder_tts = "USER_" + str(random.randint(10000, 99999))
|
| 451 |
+
|
| 452 |
os.makedirs(out_dir, exist_ok=True)
|
| 453 |
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
|
| 454 |
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
|
| 455 |
+
|
| 456 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
|
| 457 |
if play_tts:
|
| 458 |
return [out_path], out_path
|
|
|
|
| 470 |
visible=value_active
|
| 471 |
)
|
| 472 |
|
| 473 |
+
|
| 474 |
def get_gui(theme):
|
| 475 |
with gr.Blocks(theme=theme) as app:
|
| 476 |
gr.Markdown(title)
|
|
|
|
| 515 |
res_fc = respiration_filter_conf()
|
| 516 |
envel_r = envelope_ratio_conf()
|
| 517 |
const = consonant_protec_conf()
|
| 518 |
+
denoise = denoise_conf()
|
| 519 |
+
effects = effects_conf()
|
| 520 |
+
inference_button = button_conf()
|
| 521 |
+
output = output_conf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
+
inference_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
fn=run,
|
| 525 |
inputs=[
|
| 526 |
aud,
|
|
|
|
| 532 |
res_fc,
|
| 533 |
envel_r,
|
| 534 |
const,
|
| 535 |
+
denoise,
|
| 536 |
+
effects,
|
| 537 |
],
|
| 538 |
+
outputs=[output],
|
|
|
|
| 539 |
)
|
| 540 |
|
| 541 |
+
app.launch()
|
|
|
|
| 542 |
|
| 543 |
+
get_gui(theme=theme)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|