Spaces:
Running
on
Zero
Running
on
Zero
| import sys | |
| from pathlib import Path | |
| from ..utils.base_model import BaseModel | |
| from .. import logger, MODEL_REPO_ID | |
| liftfeat_path = Path(__file__).parent / "../../third_party/LiftFeat" | |
| sys.path.append(str(liftfeat_path)) | |
| from models.liftfeat_wrapper import LiftFeat | |
| class Liftfeat(BaseModel): | |
| default_conf = { | |
| "keypoint_threshold": 0.05, | |
| "max_keypoints": 5000, | |
| "model_name": "LiftFeat.pth", | |
| } | |
| required_inputs = ["image"] | |
| def _init(self, conf): | |
| logger.info("Loading LiftFeat model...") | |
| model_path = self._download_model( | |
| repo_id=MODEL_REPO_ID, | |
| filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), | |
| ) | |
| self.net = LiftFeat( | |
| weight=model_path, | |
| detect_threshold=self.conf["keypoint_threshold"], | |
| top_k=self.conf["max_keypoints"], | |
| ) | |
| logger.info("Loading LiftFeat model done!") | |
| def _forward(self, data): | |
| image = data["image"].cpu().numpy().squeeze() * 255 | |
| image = image.transpose(1, 2, 0) | |
| pred = self.net.extract(image) | |
| keypoints = pred["keypoints"] | |
| descriptors = pred["descriptors"] | |
| scores = pred["scores"] | |
| if self.conf["max_keypoints"] < len(keypoints): | |
| idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] | |
| keypoints = keypoints[idxs, :2] | |
| descriptors = descriptors[idxs] | |
| scores = scores[idxs] | |
| pred = { | |
| "keypoints": keypoints[None], | |
| "descriptors": descriptors[None].permute(0, 2, 1), | |
| "scores": scores[None], | |
| } | |
| return pred | |