Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import cv2 | |
| import argparse | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from torchvision import datasets, transforms | |
| from torch.autograd import Variable | |
| from network_v0.model import PointModel | |
| from datasets.hp_loader import PatchesDataset | |
| from torch.utils.data import DataLoader | |
| from evaluation.evaluate import evaluate_keypoint_net | |
| def main(): | |
| parser = argparse.ArgumentParser(description='Testing') | |
| parser.add_argument('--device', default=0, type=int, help='which gpu to run on.') | |
| parser.add_argument('--test_dir', required=True, type=str, help='Test data path.') | |
| opt = parser.parse_args() | |
| torch.manual_seed(0) | |
| use_gpu = torch.cuda.is_available() | |
| if use_gpu: | |
| torch.cuda.set_device(opt.device) | |
| # Load data in 320x240 | |
| hp_dataset_320x240 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(320, 240), type='all') | |
| data_loader_320x240 = DataLoader(hp_dataset_320x240, | |
| batch_size=1, | |
| pin_memory=False, | |
| shuffle=False, | |
| num_workers=4, | |
| worker_init_fn=None, | |
| sampler=None) | |
| # Load data in 640x480 | |
| hp_dataset_640x480 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(640, 480), type='all') | |
| data_loader_640x480 = DataLoader(hp_dataset_640x480, | |
| batch_size=1, | |
| pin_memory=False, | |
| shuffle=False, | |
| num_workers=4, | |
| worker_init_fn=None, | |
| sampler=None) | |
| # Load model | |
| model = PointModel(is_test=True) | |
| ckpt = torch.load('./checkpoints/PointModel_v0.pth') | |
| model.load_state_dict(ckpt['model_state']) | |
| model = model.eval() | |
| if use_gpu: | |
| model = model.cuda() | |
| print('Evaluating in 320x240, 300 points') | |
| rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net( | |
| data_loader_320x240, | |
| model, | |
| output_shape=(320, 240), | |
| top_k=300) | |
| print('Repeatability: {0:.3f}'.format(rep)) | |
| print('Localization Error: {0:.3f}'.format(loc)) | |
| print('H-1 Accuracy: {:.3f}'.format(c1)) | |
| print('H-3 Accuracy: {:.3f}'.format(c3)) | |
| print('H-5 Accuracy: {:.3f}'.format(c5)) | |
| print('Matching Score: {:.3f}'.format(mscore)) | |
| print('\n') | |
| print('Evaluating in 640x480, 1000 points') | |
| rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net( | |
| data_loader_640x480, | |
| model, | |
| output_shape=(640, 480), | |
| top_k=1000) | |
| print('Repeatability: {0:.3f}'.format(rep)) | |
| print('Localization Error: {0:.3f}'.format(loc)) | |
| print('H-1 Accuracy: {:.3f}'.format(c1)) | |
| print('H-3 Accuracy: {:.3f}'.format(c3)) | |
| print('H-5 Accuracy: {:.3f}'.format(c5)) | |
| print('Matching Score: {:.3f}'.format(mscore)) | |
| print('\n') | |
| if __name__ == '__main__': | |
| main() | |