Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| st.title("Correct Grammar with Transformers 🦄") | |
| st.write("") | |
| st.write("Input your text here!") | |
| default_value = "Urveesh and Raj is playing cricket" | |
| sent = st.text_area("Text", default_value, height=50) | |
| num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=3, value=1, step=1) | |
| # Run Model | |
| from transformers import T5ForConditionalGeneration, T5Tokenizer | |
| import torch | |
| torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector') | |
| model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device) | |
| def correct_grammar(input_text, num_return_sequences): | |
| batch = tokenizer([input_text], truncation=True, padding='max_length', max_length=len(input_text), return_tensors="pt").to(torch_device) | |
| results = model.generate(**batch, max_length=len(input_text), num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5) | |
| return results | |
| # Prompts | |
| results = correct_grammar(sent, num_return_sequences) | |
| # Decode generated sequences | |
| generated_sequences = [tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) for generated_sequence in results] | |
| # Add "Check Now" button | |
| if st.button("Check Now"): | |
| st.write("### Results:") | |
| # Check correctness and display in green or red | |
| for generated_sequence in generated_sequences: | |
| is_correct = generated_sequence == sent | |
| color = "green" if is_correct else "red" | |
| st.write(f"**Generated Sentence:**", generated_sequence, f" (Matches original: {is_correct})", unsafe_allow_html=True) | |
| # If incorrect, display correct grammar sentence in a box | |
| if not is_correct: | |
| st.warning(f"**Correct Grammar:** {sent}") | |
| # Display original input | |
| st.write("### Original Input:") | |
| st.write(sent) |