artishow-api / api.py
Wassleboss's picture
Update api.py
e1994a3 verified
from flask import Flask, request, jsonify
from GenreMoodClassification import *
from CnnClassification import *
from phraseMood import *
import uuid
from playlistGeneration import *
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
if not os.path.exists('uploads'):
os.makedirs('uploads')
if not os.path.exists('images'):
os.makedirs('images')
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
filename = f"temp_{uuid.uuid4().hex}.mp3"
filepath = os.path.join("uploads", filename)
file.save(filepath)
img = audio_to_mel_spec(filepath, "images/spectrogramme")
img_array = load_image("images/spectrogramme.png")
predCnn = model_CNN.predict(img_array)
predicted_indices = np.argsort(predCnn[0])[-2:][::-1]
genre1 = genre_map[predicted_indices[0]]
genre2 = genre_map[predicted_indices[1]]
print(f"Genre Predicted : {genre1}, {genre2}")
try:
songFeatures = extract_features(filepath)
except Exception as e:
print(f"Erreur lors de l'extraction des features: {e}")
return jsonify({'error': 'Failed to process audio file'}), 500
df_test_mood = pd.DataFrame(songFeatures, index=[0])
scaler_mood = joblib.load("models/scaler (1).pkl")
knn_model_mood = joblib.load("models/knn_model_mood (1).pkl")
df_test_scaled_mood = scaler_mood.transform(df_test_mood)
predicted_mood_array = knn_model_mood.predict(df_test_scaled_mood)
mood = predicted_mood_array[0]
print(f"Mood Predicted: {mood_map[mood]}")
if (genre1 == "country"):
listId = playlist_generator_music(genre2, mood_map[mood])
else:
listId = playlist_generator_music(genre1, mood_map[mood])
print(f"Playlist générée : {listId}")
return jsonify({'resultat': listId})
@app.route('/moodPhrasePredict', methods=['POST'])
def mood_phrase_predict():
phrase = request.form.get('string')
print(f"Phrase reçue : {phrase}")
if not phrase:
return jsonify({'error': 'No string provided'}), 400
result = phraseMoodPredict(phrase)
print(f"Mood détecté : {result}")
listId = playlist_generator_mood(result)
print(listId)
return jsonify({'resultat': listId})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)