Spaces:
Sleeping
Sleeping
File size: 18,817 Bytes
4b0fcc2 00fb643 bdb326c 39b2ec5 16a9c1b ca84ae9 00fb643 8c969cd 6558119 16a9c1b bdb326c 566e91d 081ccb7 ca84ae9 10261fa 16a9c1b bdb326c 081ccb7 bdb326c 081ccb7 bdb326c 081ccb7 bdb326c 081ccb7 bdb326c 39b2ec5 dbcf6db bdb326c ca84ae9 bdb326c ca84ae9 bdb326c dbcf6db bdb326c dbcf6db bdb326c 39b2ec5 10261fa ca84ae9 bdb326c ca84ae9 bdb326c ca84ae9 bdb326c ca84ae9 dbcf6db ca84ae9 dbcf6db ca84ae9 dbcf6db ca84ae9 dbcf6db 39b2ec5 10261fa 39b2ec5 bdb326c 39b2ec5 ca84ae9 bdb326c ca84ae9 bdb326c ca84ae9 bdb326c 10261fa 566e91d ca84ae9 081ccb7 566e91d ca84ae9 566e91d ca84ae9 566e91d 9b597a1 16a9c1b 9b597a1 16a9c1b 9b597a1 16a9c1b 9b597a1 16a9c1b ca84ae9 5e9461b b6eaa3b 5e9461b b6eaa3b 5e9461b e50a344 081ccb7 566e91d 5e9461b 566e91d 5e9461b 081ccb7 5e9461b 081ccb7 e50a344 081ccb7 ca84ae9 081ccb7 62ec76a bb2baac 081ccb7 bb2baac ca84ae9 bb2baac ca84ae9 081ccb7 bb2baac 081ccb7 bb2baac bdb326c 081ccb7 bdb326c 081ccb7 ca84ae9 081ccb7 bb2baac ca84ae9 16a9c1b ca84ae9 081ccb7 16a9c1b 081ccb7 16a9c1b 081ccb7 ca84ae9 c501664 081ccb7 bb2baac ca84ae9 bdb326c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import json
import re
import os
import hashlib
import onnxruntime as ort
import numpy as np
from typing import List, Dict, Set, Optional
score_map = {'A': 5, 'B': 4, 'C': 3, 'D': 2, 'E': 1}
class SentenceExtractor:
def __init__(
self,
eval_keywords_path: str,
model_path: str = "distilled_model.onnx",
*,
# 分句与聚合相关的可配置开关
merge_leading_punct: bool = True,
min_sentence_char_len: int = 6,
aggregation_mode: str = "max", # 可选:"max" | "mean"
# 加减号阈值(>0 / <0 为原逻辑;建议适度提高到 2/-2)
word_score_plus_threshold: int = 1,
word_score_minus_threshold: int = -1,
):
# 统一以文件所在目录为根,避免工作目录不同导致找不到资源
self.base_dir = os.path.dirname(os.path.abspath(__file__))
self.tokenizer_dir = self.base_dir
# 允许传相对路径:自动转绝对
if not os.path.isabs(model_path):
model_path = os.path.join(self.base_dir, model_path)
if not os.path.isabs(eval_keywords_path):
eval_keywords_path = os.path.join(self.base_dir, eval_keywords_path)
self.eval_keywords = self._load_eval_keywords(eval_keywords_path)
self.all_keywords = self._extract_all_keywords()
self.ort_session = None
self.input_name = None
self.output_name = None
# 配置项
self.merge_leading_punct = merge_leading_punct
self.min_sentence_char_len = max(0, int(min_sentence_char_len))
self.aggregation_mode = aggregation_mode.lower().strip()
if self.aggregation_mode not in {"max", "mean"}:
self.aggregation_mode = "max"
self.word_score_plus_threshold = int(word_score_plus_threshold)
self.word_score_minus_threshold = int(word_score_minus_threshold)
self.providers: Optional[List[str]] = None
self.tokenizer_loaded: bool = False
self.last_tokenizer_error: Optional[str] = None
try:
# 强制使用 CPU provider,避免某些环境下选择到不可用的 GPU provider 导致加载失败
self.ort_session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
self.input_name = self.ort_session.get_inputs()[0].name
self.output_name = self.ort_session.get_outputs()[0].name
try:
self.providers = self.ort_session.get_providers()
except Exception:
self.providers = None
print("ONNX 模型加载成功")
self.model_loaded: bool = True
except Exception as e:
print(f"ONNX 模型加载失败: {e}")
self.ort_session = None
self.model_loaded = False
# 记录模型文件信息,便于排查“用错模型”问题
try:
self.model_path_abs: Optional[str] = os.path.abspath(model_path)
self.model_sha256: Optional[str] = None
if os.path.exists(model_path):
sha = hashlib.sha256()
with open(model_path, 'rb') as f:
for chunk in iter(lambda: f.read(8192), b''):
sha.update(chunk)
self.model_sha256 = sha.hexdigest()
except Exception:
self.model_path_abs = None
self.model_sha256 = None
def _preprocess_text(self, text: str) -> np.ndarray:
try:
from transformers import AutoTokenizer
# 1) 优先从与脚本同目录加载本地 tokenizer(部署一起带上 tokenizer.json 等文件)
try:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_dir, local_files_only=True)
except Exception:
try:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_dir)
except Exception:
# 2) 兜底:在线模型(需要外网)
tokenizer = AutoTokenizer.from_pretrained("uer/chinese_roberta_L-4_H-256")
inputs = tokenizer(
text,
truncation=True,
padding=True,
max_length=512,
return_tensors='np'
)
self.tokenizer_loaded = True
self.last_tokenizer_error = None
return inputs
except Exception as e:
self.tokenizer_loaded = False
self.last_tokenizer_error = str(e)
# 继续抛出异常,由上层捕获并回退,同时记录原因
raise
def _predict_grade_with_model(self, text: str) -> Dict[str, any]:
try:
if not self.ort_session:
word_score = self._calculate_word_scores(text)["total_score"]
grade = "C"
if word_score > 1:
grade = "B"
if word_score < -1:
grade = "D"
return {"grade": grade, "source": "rule", "word_score_total": word_score}
inputs = self._preprocess_text(text)
model_input_names = [i.name for i in self.ort_session.get_inputs()]
input_data = {}
if isinstance(inputs, dict) and 'input_ids' in inputs:
token_type = inputs.get('token_type_ids')
attn = inputs.get('attention_mask')
ids = inputs['input_ids']
for name in model_input_names:
lowered = name.lower()
if 'mask' in lowered:
input_data[name] = attn if attn is not None else np.ones_like(ids)
elif 'token_type' in lowered or 'segment' in lowered:
if token_type is None:
token_type = np.zeros_like(ids)
input_data[name] = token_type
elif 'input_ids' in lowered or 'input' in lowered or 'ids' in lowered:
input_data[name] = ids
else:
input_data[name] = np.zeros_like(ids)
else:
target_input = self.input_name or (model_input_names[0] if model_input_names else 'input')
input_data = {target_input: inputs}
outputs = self.ort_session.run([self.output_name], input_data)
predictions = outputs[0]
grade_index = int(np.argmax(predictions))
grades = ['A', 'B', 'C', 'D', 'E']
probs = self._softmax(predictions)[0].tolist()
return {
"grade": grades[grade_index],
"source": "model",
"prob": float(probs[grade_index]),
"probs": probs,
"logits": predictions[0].tolist(),
}
except Exception as e:
print(f"模型预测出错: {e}")
word_score = self._calculate_word_scores(text)["total_score"]
grade = "C"
if word_score > 1:
grade = "B"
if word_score < -1:
grade = "D"
return {
"grade": grade,
"source": "rule",
"word_score_total": word_score,
"reason": str(e),
"tokenizer_loaded": self.tokenizer_loaded,
"last_tokenizer_error": self.last_tokenizer_error,
}
@staticmethod
def _softmax(x: np.ndarray) -> np.ndarray:
x = x - np.max(x, axis=-1, keepdims=True)
exp_x = np.exp(x)
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def _load_eval_keywords(self, file_path: str) -> Dict[str, Dict[str, List[str]]]:
try:
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"加载评估关键词库失败: {e}")
return {}
def _extract_all_keywords(self) -> Set[str]:
keywords_set = set()
for category, types in self.eval_keywords.items():
for _, keywords in types.items():
keywords_set.update(keywords)
return keywords_set
def _split_into_sentences(self, text: str) -> List[str]:
if not text:
return []
# 先按强终止符切分
normalized = re.sub(r'([。!?.!?])', r'\1\n', text)
normalized = re.sub(r'[;;]\s*', ';\n', normalized)
candidates = [s.strip() for s in re.split(r'[\r\n]+', normalized) if s.strip()]
# 长句再按逗号细分
rough_sentences: List[str] = []
for s in candidates:
if len(s) > 80 and not re.search(r'[。!?.!?;;]', s):
parts = re.split(r'[,,]', s)
rough_sentences.extend([p.strip() for p in parts if p.strip()])
else:
rough_sentences.append(s)
# 合并以标点开头的碎片,并过滤超短句
sentences: List[str] = []
leading_punct_pattern = r'^[,,。;;::、\s]+'
for s in rough_sentences:
if self.merge_leading_punct and re.match(leading_punct_pattern, s):
# 去掉前缀标点后并入上一句
cleaned = re.sub(leading_punct_pattern, '', s)
if sentences:
sentences[-1] = f"{sentences[-1]}{cleaned}"
else:
if cleaned:
sentences.append(cleaned)
continue
# 过滤极短句(去标点长度)
plain = re.sub(r'[,,。;;::、!!??\s]', '', s)
if self.min_sentence_char_len > 0 and len(plain) < self.min_sentence_char_len:
# 不直接丢弃:若有上一句,合并
if sentences:
sentences[-1] = f"{sentences[-1]}{s}"
else:
sentences.append(s)
continue
sentences.append(s)
return [s.strip() for s in sentences if s and s.strip()]
def _fuzzy_match_keyword(self, sentence: str, keyword: str) -> bool:
"""更严格的中文关键词匹配。
- 长度 < 2 的关键词(如“好”)仅按分词后的精确词匹配,避免所有句子都命中。
- 其余关键词采用去标点后的包含匹配。
"""
if not keyword:
return False
# 统一去空白
sentence = sentence.strip()
keyword = keyword.strip()
# 对极短关键词走分词精确匹配,避免过拟合
if len(keyword) < 2:
try:
import jieba # 已在 requirements 中
tokens = set(jieba.lcut(sentence))
return keyword in tokens
except Exception:
# 兜底:对极短词不做模糊匹配
return False
# 一般关键词:去标点后做包含匹配
import string
trans = str.maketrans('', '', string.punctuation)
sentence_clean = sentence.translate(trans)
keyword_clean = keyword.translate(trans)
return keyword_clean in sentence_clean
def _is_negated_positive(self, text: str, keyword: str) -> bool:
"""检测积极关键词是否被否定词修饰,例如:
- 没有/无/不/非/未/并不/毫无 + 关键词
- 对以“有”开头的积极词(如“有创新性”),也匹配“没有/无/不/未/并不/毫无 + 去掉‘有’后的部分(如“创新性”)”
- 缺乏/不足/欠缺/缺少/不具备 + 关键词 或 关键词去“有”后的部分
"""
if not keyword:
return False
sentence = text.strip()
neg_prefixes = [
"没有", "没", "无", "不", "非", "未", "并不", "并没有", "并无", "毫无"
]
lack_prefixes = [
"缺乏", "不足", "欠缺", "缺少", "不具备", "不够"
]
# 构建安全的正则片段
import re
def any_prefix(prefixes: List[str]) -> str:
return "(?:" + "|".join(re.escape(p) for p in prefixes) + ")"
patterns: List[str] = []
# 直接:否定前缀 + 关键词
patterns.append(rf"{any_prefix(neg_prefixes)}\s*{re.escape(keyword)}")
# 直接:缺乏类前缀 + 关键词
patterns.append(rf"{any_prefix(lack_prefixes)}\s*{re.escape(keyword)}")
# 若积极词以“有”开头,额外匹配去掉“有”的尾部(例如 ‘有创新性’ → ‘创新性’)
if keyword.startswith("有") and len(keyword) > 1:
tail = keyword[1:]
patterns.append(rf"{any_prefix(neg_prefixes)}\s*{re.escape(tail)}")
patterns.append(rf"{any_prefix(lack_prefixes)}\s*{re.escape(tail)}")
for pat in patterns:
if re.search(pat, sentence):
return True
return False
def _extract_relevant_sentences(self, text: str) -> List[str]:
sentences = self._split_into_sentences(text)
relevant_sentences = []
for sentence in sentences:
for category in ["student_performance", "content_quality", "cross_scene"]:
if category not in self.eval_keywords:
continue
for sentiment in ["positive", "negative", "nature", "suggestion"]:
if sentiment not in self.eval_keywords[category]:
continue
for keyword in self.eval_keywords[category][sentiment]:
if self._fuzzy_match_keyword(sentence, keyword):
if sentence not in relevant_sentences:
relevant_sentences.append(sentence)
break
else:
continue
break
else:
continue
break
return relevant_sentences
def _calculate_word_scores(self, text: str) -> Dict[str, int]:
positive_count = 0
negative_count = 0
neutral_count = 0
total_score = 0
for category in ["student_performance", "content_quality", "cross_scene"]:
if category not in self.eval_keywords:
continue
for keyword in self.eval_keywords[category].get("positive", []):
if self._fuzzy_match_keyword(text, keyword):
# 遇到被否定的积极词(如“没有创新性”含“有创新性”),按消极计分
if self._is_negated_positive(text, keyword):
negative_count += 1
total_score -= 1
else:
positive_count += 1
total_score += 1
for keyword in self.eval_keywords[category].get("negative", []):
if self._fuzzy_match_keyword(text, keyword):
negative_count += 1
total_score -= 1
for keyword in self.eval_keywords[category].get("nature", []):
if self._fuzzy_match_keyword(text, keyword):
neutral_count += 1
return {
"positive_count": positive_count,
"negative_count": negative_count,
"neutral_count": neutral_count,
"total_score": total_score,
}
def extract(self, text: str) -> Dict[str, any]:
if not text:
return {
"comprehensive_grade": "C",
"positive_word_count": 0,
"negative_word_count": 0,
"neutral_word_count": 0,
"scored_sentences": [],
"count": 0,
}
relevant_sentences = self._extract_relevant_sentences(text)
scored_sentences = []
total_sentence_score = 0
for sentence in relevant_sentences:
info = self._predict_grade_with_model(sentence)
grade = info.get("grade", "C")
score = score_map.get(grade, 3)
# 附带调试信息
scored_sentences.append({
"sentence": sentence,
"grade": grade,
"source": info.get("source", "unknown"),
"prob": info.get("prob"),
"word_score_total": info.get("word_score_total"),
})
total_sentence_score += score
comprehensive_grade = "C"
if relevant_sentences:
reverse_map = {5: 'A', 4: 'B', 3: 'C', 2: 'D', 1: 'E'}
if self.aggregation_mode == "max":
# 取最高等级(更鲁棒,避免短碎句拉低均值)
max_score = max(score_map.get(item["grade"], 3) for item in scored_sentences)
comprehensive_grade = reverse_map.get(max_score, "C")
else:
avg_score = total_sentence_score / len(relevant_sentences)
rounded_score = int(round(avg_score))
comprehensive_grade = reverse_map.get(rounded_score, "C")
word_scores = self._calculate_word_scores(text)
final_grade = comprehensive_grade
if word_scores["total_score"] > self.word_score_plus_threshold:
final_grade = comprehensive_grade + "+"
elif word_scores["total_score"] < self.word_score_minus_threshold:
final_grade = comprehensive_grade + "-"
return {
"comprehensive_grade": final_grade,
"positive_word_count": word_scores["positive_count"],
"negative_word_count": word_scores["negative_count"],
"neutral_word_count": word_scores["neutral_count"],
"scored_sentences": scored_sentences,
"count": len(relevant_sentences),
# 调试字段
"debug": {
"model_loaded": getattr(self, "model_loaded", False),
"model_path_abs": getattr(self, "model_path_abs", None),
"model_sha256": getattr(self, "model_sha256", None),
"providers": self.providers,
"tokenizer_loaded": self.tokenizer_loaded,
"last_tokenizer_error": self.last_tokenizer_error,
"aggregation_mode": self.aggregation_mode,
"min_sentence_char_len": self.min_sentence_char_len,
"merge_leading_punct": self.merge_leading_punct,
"word_score_plus_threshold": self.word_score_plus_threshold,
"word_score_minus_threshold": self.word_score_minus_threshold,
"relevant_sentences": relevant_sentences,
"word_score_total": word_scores["total_score"],
}
}
|