Spaces:
Runtime error
Runtime error
| import json | |
| import psutil | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| import os | |
| import tarfile | |
| from typing import List, Tuple | |
| import boto3 | |
| import logging | |
| from pathlib import Path | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| class CustomerSupportBot: | |
| def __init__(self, model_path=None): | |
| """ | |
| Initialize the customer support bot with the fine-tuned model. | |
| Args: | |
| model_path (str): Path to the saved model and tokenizer | |
| """ | |
| self.process = psutil.Process(os.getpid()) | |
| if model_path is None: | |
| self.model_path = os.path.join(os.path.expanduser("~"), "customer_support_gpt") | |
| else: | |
| self.model_path = model_path | |
| self.model_path = Path(self.model_path) | |
| self.model_file_path = self.model_path / "model.tar.gz" | |
| self.s3 = boto3.client("s3") | |
| self.model_key = "models/model.tar.gz" | |
| self.bucket_name = "customer-support-gpt" | |
| # Download and load the model | |
| try: | |
| self.download_and_load_model() | |
| except Exception as e: | |
| logger.error(f"Failed to initialize model: {str(e)}") | |
| raise | |
| def download_and_load_model(self): | |
| try: | |
| # Create model directory if it doesn't exist | |
| self.model_path.mkdir(parents=True, exist_ok=True) | |
| logger.info(f"Using model directory: {self.model_path}") | |
| # Download model from S3 if needed | |
| if not self.model_file_path.exists(): | |
| logger.info("Downloading model from S3...") | |
| self.s3.download_file(self.bucket_name, self.model_key, str(self.model_file_path)) | |
| logger.info("Download complete. Extracting model files...") | |
| # Extract the model files | |
| with tarfile.open(self.model_file_path, "r:gz") as tar: | |
| tar.extractall(str(self.model_path)) | |
| # Load the model and tokenizer | |
| logger.info("Loading model and tokenizer...") | |
| self.tokenizer = AutoTokenizer.from_pretrained(str(self.model_path)) | |
| self.model = AutoModelForCausalLM.from_pretrained(str(self.model_path)) | |
| logger.info("Model and tokenizer loaded successfully.") | |
| # Move model to GPU if available | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.model = self.model.to(self.device) | |
| logger.info(f'Model loaded on device: {self.device}') | |
| except PermissionError as e: | |
| logger.error(f"Permission error when accessing {self.model_path}: {str(e)}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Error in download_and_load_model: {str(e)}") | |
| raise | |
| def generate_response(self, message: str, max_length=100, temperature=0.7) -> str: | |
| try: | |
| input_text = f"Instruction: {message}\nResponse:" | |
| # Tokenize input text | |
| inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device) | |
| # Generate response using the model | |
| with torch.no_grad(): | |
| outputs = self.model.generate( | |
| **inputs, | |
| max_length=max_length, | |
| temperature=temperature, | |
| num_return_sequences=1, | |
| pad_token_id=self.tokenizer.pad_token_id, | |
| eos_token_id=self.tokenizer.eos_token_id, | |
| do_sample=True, | |
| top_p=0.95, | |
| top_k=50 | |
| ) | |
| # Decode and format the response | |
| response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| response = response.split("Response:")[-1].strip() | |
| return response | |
| except Exception as e: | |
| return f"An error occurred: {str(e)}" | |
| def monitor_resources(self) -> dict: | |
| usage = { | |
| "CPU (%)": self.process.cpu_percent(interval=1), | |
| "RAM (GB)": self.process.memory_info().rss / (1024 ** 3) | |
| } | |
| return usage | |
| def create_chat_interface(): | |
| try: | |
| # Use a user-accessible directory for the model | |
| user_model_path = os.path.join(os.path.expanduser("~"), "customer_support_models") | |
| bot = CustomerSupportBot(model_path=user_model_path) | |
| def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]: | |
| if not message: | |
| return "", history | |
| bot_response = bot.generate_response(message) | |
| # Log resource usage | |
| usage = bot.monitor_resources() | |
| print("Resource Usage:", usage) | |
| history.append((message, bot_response)) | |
| return "", history | |
| # Create the Gradio interface with custom CSS | |
| with gr.Blocks(css=""" | |
| .message-box { | |
| margin-bottom: 10px; | |
| } | |
| .button-row { | |
| display: flex; | |
| gap: 10px; | |
| margin-top: 10px; | |
| } | |
| """) as interface: | |
| gr.Markdown("# Customer Support Chatbot") | |
| gr.Markdown("Welcome! How can I assist you today?") | |
| chatbot = gr.Chatbot( | |
| label="Chat History", | |
| height=500, | |
| elem_classes="message-box", | |
| # type="messages" | |
| ) | |
| with gr.Row(): | |
| msg = gr.Textbox( | |
| label="Your Message", | |
| placeholder="Type your message here...", | |
| lines=2, | |
| elem_classes="message-box" | |
| ) | |
| with gr.Row(elem_classes="button-row"): | |
| submit = gr.Button("Send Message", variant="primary") | |
| clear = gr.ClearButton([msg, chatbot], value="Clear Chat") | |
| # Add example queries in a separate row | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| "How do I reset my password?", | |
| "What are your shipping policies?", | |
| "I want to return a product.", | |
| "How can I track my order?", | |
| "What payment methods do you accept?" | |
| ], | |
| inputs=msg, | |
| label="Example Questions" | |
| ) | |
| # Set up event handlers | |
| submit_click = submit.click( | |
| predict, | |
| inputs=[msg, chatbot], | |
| outputs=[msg, chatbot] | |
| ) | |
| msg.submit( | |
| predict, | |
| inputs=[msg, chatbot], | |
| outputs=[msg, chatbot] | |
| ) | |
| # Add keyboard shortcut for submit | |
| msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit]) | |
| print("Interface created successfully.") | |
| # call the initial query function | |
| # run a query first how are you and predict the output | |
| print(predict("How are you", [])) | |
| # run a command which checks the resource usage | |
| print(f'Bot Resource Usage : {bot.monitor_resources()}') | |
| # show full system usage | |
| print(f'CPU Percentage : {psutil.cpu_percent()}') | |
| print(f'RAM Usage : {psutil.virtual_memory()}') | |
| print(f'Swap Memory : {psutil.swap_memory()}') | |
| return interface | |
| except Exception as e: | |
| logger.error(f"Failed to create chat interface: {str(e)}") | |
| raise | |
| if __name__ == "__main__": | |
| try: | |
| logger.info("Starting customer support bot application...") | |
| demo = create_chat_interface() | |
| demo.launch( | |
| share=False, | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| debug=True, | |
| inline=False | |
| ) | |
| except Exception as e: | |
| logger.error(f"Application failed to start: {str(e)}") | |
| raise |