Spaces:
Runtime error
Runtime error
VenkateshRoshan
commited on
Commit
·
a562c0d
1
Parent(s):
45f8739
instance updation
Browse files- app.py +4 -4
- src/deploy_sagemaker.py +3 -2
- src/infer.py +115 -20
app.py
CHANGED
|
@@ -47,7 +47,7 @@ class CustomerSupportBot:
|
|
| 47 |
print("Model and tokenizer loaded successfully.")
|
| 48 |
|
| 49 |
# Move model to GPU if available
|
| 50 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
self.model = self.model.to(self.device)
|
| 52 |
|
| 53 |
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
|
|
@@ -170,8 +170,8 @@ if __name__ == "__main__":
|
|
| 170 |
demo = create_chat_interface()
|
| 171 |
demo.launch(
|
| 172 |
share=True,
|
| 173 |
-
|
| 174 |
-
|
| 175 |
debug=True,
|
| 176 |
-
inline=False
|
| 177 |
)
|
|
|
|
| 47 |
print("Model and tokenizer loaded successfully.")
|
| 48 |
|
| 49 |
# Move model to GPU if available
|
| 50 |
+
self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
self.model = self.model.to(self.device)
|
| 52 |
|
| 53 |
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
|
|
|
|
| 170 |
demo = create_chat_interface()
|
| 171 |
demo.launch(
|
| 172 |
share=True,
|
| 173 |
+
server_name="0.0.0.0", # Makes the server accessible from other machines
|
| 174 |
+
server_port=7860, # Specify the port
|
| 175 |
debug=True,
|
| 176 |
+
inline=False#, server_port=6006
|
| 177 |
)
|
src/deploy_sagemaker.py
CHANGED
|
@@ -31,14 +31,15 @@ def deploy_app(acc_id, region_name, role_arn, ecr_repo_name, endpoint_name="cust
|
|
| 31 |
model = Model(
|
| 32 |
image_uri=ecr_image,
|
| 33 |
role=role_arn,
|
| 34 |
-
sagemaker_session=sagemaker_session
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
# Deploy model as a SageMaker endpoint
|
| 38 |
logger.info(f"Starting deployment of Gradio app to SageMaker endpoint {endpoint_name}...")
|
| 39 |
predictor = model.deploy(
|
| 40 |
initial_instance_count=1,
|
| 41 |
-
instance_type="ml.g4dn.xlarge",
|
| 42 |
endpoint_name=endpoint_name
|
| 43 |
)
|
| 44 |
logger.info(f"Gradio app deployed successfully to endpoint: {endpoint_name}")
|
|
|
|
| 31 |
model = Model(
|
| 32 |
image_uri=ecr_image,
|
| 33 |
role=role_arn,
|
| 34 |
+
sagemaker_session=sagemaker_session,
|
| 35 |
+
entry_point="serve",
|
| 36 |
)
|
| 37 |
|
| 38 |
# Deploy model as a SageMaker endpoint
|
| 39 |
logger.info(f"Starting deployment of Gradio app to SageMaker endpoint {endpoint_name}...")
|
| 40 |
predictor = model.deploy(
|
| 41 |
initial_instance_count=1,
|
| 42 |
+
instance_type="ml.t3.large", #"ml.g4dn.xlarge",
|
| 43 |
endpoint_name=endpoint_name
|
| 44 |
)
|
| 45 |
logger.info(f"Gradio app deployed successfully to endpoint: {endpoint_name}")
|
src/infer.py
CHANGED
|
@@ -1,41 +1,114 @@
|
|
| 1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class CustomerSupportBot:
|
| 5 |
def __init__(self, model_path="models/customer_support_gpt"):
|
| 6 |
"""
|
| 7 |
-
Initialize the customer support bot with the fine-tuned model.
|
| 8 |
|
| 9 |
Args:
|
| 10 |
model_path (str): Path to the saved model and tokenizer
|
| 11 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
|
|
|
|
|
| 13 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
|
| 14 |
|
| 15 |
# Move model to GPU if available
|
| 16 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
self.model = self.model.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def generate_response(self, instruction, max_length=100, temperature=0.7):
|
| 20 |
"""
|
| 21 |
-
Generate a response for a given customer support instruction/query.
|
| 22 |
|
| 23 |
Args:
|
| 24 |
instruction (str): Customer's query or instruction
|
| 25 |
max_length (int): Maximum length of the generated response
|
| 26 |
-
temperature (float): Controls randomness in generation
|
| 27 |
|
| 28 |
Returns:
|
| 29 |
-
|
| 30 |
"""
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
|
| 34 |
-
#
|
|
|
|
| 35 |
inputs = self.tokenizer(input_text, return_tensors="pt")
|
| 36 |
inputs = inputs.to(self.device)
|
| 37 |
|
| 38 |
-
# Generate response
|
|
|
|
| 39 |
with torch.no_grad():
|
| 40 |
outputs = self.model.generate(
|
| 41 |
**inputs,
|
|
@@ -48,18 +121,32 @@ class CustomerSupportBot:
|
|
| 48 |
top_p=0.95,
|
| 49 |
top_k=50
|
| 50 |
)
|
|
|
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
#
|
|
|
|
| 56 |
response = response.split("Response:")[-1].strip()
|
| 57 |
|
| 58 |
-
return response
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def main():
|
| 61 |
# Initialize the bot
|
|
|
|
| 62 |
bot = CustomerSupportBot()
|
|
|
|
| 63 |
|
| 64 |
# Example queries
|
| 65 |
example_queries = [
|
|
@@ -68,22 +155,30 @@ def main():
|
|
| 68 |
"I want to return a product.",
|
| 69 |
]
|
| 70 |
|
| 71 |
-
# Generate and print responses
|
| 72 |
-
print("
|
| 73 |
for query in example_queries:
|
| 74 |
print(f"Customer: {query}")
|
| 75 |
-
response = bot.generate_response(query)
|
| 76 |
-
print(f"Bot: {response}
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
# Interactive mode
|
| 79 |
print("Enter your questions (type 'quit' to exit):")
|
| 80 |
while True:
|
| 81 |
query = input("\nYour question: ")
|
| 82 |
if query.lower() == 'quit':
|
| 83 |
break
|
| 84 |
-
|
| 85 |
-
response = bot.generate_response(query)
|
| 86 |
print(f"Bot: {response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
if __name__ == "__main__":
|
| 89 |
main()
|
|
|
|
| 1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
import torch
|
| 3 |
+
import psutil
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
class MemoryTracker:
|
| 10 |
+
@staticmethod
|
| 11 |
+
def get_memory_usage() -> Dict[str, float]:
|
| 12 |
+
"""Get current memory usage statistics."""
|
| 13 |
+
process = psutil.Process(os.getpid())
|
| 14 |
+
memory_info = process.memory_info()
|
| 15 |
+
|
| 16 |
+
return {
|
| 17 |
+
'rss': memory_info.rss / (1024 * 1024), # RSS in MB
|
| 18 |
+
'vms': memory_info.vms / (1024 * 1024), # VMS in MB
|
| 19 |
+
'gpu': torch.cuda.memory_allocated() / (1024 * 1024) if torch.cuda.is_available() else 0 # GPU memory in MB
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
@staticmethod
|
| 23 |
+
def format_memory_stats(stats: Dict[str, float]) -> str:
|
| 24 |
+
"""Format memory statistics into a readable string."""
|
| 25 |
+
return (f"RSS Memory: {stats['rss']:.2f} MB\n"
|
| 26 |
+
f"Virtual Memory: {stats['vms']:.2f} MB\n"
|
| 27 |
+
f"GPU Memory: {stats['gpu']:.2f} MB")
|
| 28 |
|
| 29 |
class CustomerSupportBot:
|
| 30 |
def __init__(self, model_path="models/customer_support_gpt"):
|
| 31 |
"""
|
| 32 |
+
Initialize the customer support bot with the fine-tuned model and memory tracking.
|
| 33 |
|
| 34 |
Args:
|
| 35 |
model_path (str): Path to the saved model and tokenizer
|
| 36 |
"""
|
| 37 |
+
# Record initial memory state
|
| 38 |
+
self.initial_memory = MemoryTracker.get_memory_usage()
|
| 39 |
+
|
| 40 |
+
# Load tokenizer and track memory
|
| 41 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 42 |
+
self.post_tokenizer_memory = MemoryTracker.get_memory_usage()
|
| 43 |
+
|
| 44 |
+
# Load model and track memory
|
| 45 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 46 |
+
self.post_model_memory = MemoryTracker.get_memory_usage()
|
| 47 |
|
| 48 |
# Move model to GPU if available
|
| 49 |
+
self.device = "cpu"#"cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
self.model = self.model.to(self.device)
|
| 51 |
+
self.post_device_memory = MemoryTracker.get_memory_usage()
|
| 52 |
+
|
| 53 |
+
# Calculate memory deltas
|
| 54 |
+
self.memory_deltas = {
|
| 55 |
+
'tokenizer_load': {k: self.post_tokenizer_memory[k] - self.initial_memory[k]
|
| 56 |
+
for k in self.initial_memory},
|
| 57 |
+
'model_load': {k: self.post_model_memory[k] - self.post_tokenizer_memory[k]
|
| 58 |
+
for k in self.initial_memory},
|
| 59 |
+
'device_transfer': {k: self.post_device_memory[k] - self.post_model_memory[k]
|
| 60 |
+
for k in self.initial_memory}
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Initialize inference memory tracking
|
| 64 |
+
self.inference_memory_stats = []
|
| 65 |
+
|
| 66 |
+
def get_memory_report(self) -> str:
|
| 67 |
+
"""Generate a comprehensive memory usage report."""
|
| 68 |
+
report = ["Memory Usage Report:"]
|
| 69 |
+
|
| 70 |
+
report.append("\nModel Loading Memory Changes:")
|
| 71 |
+
report.append("Tokenizer Loading:")
|
| 72 |
+
report.append(MemoryTracker.format_memory_stats(self.memory_deltas['tokenizer_load']))
|
| 73 |
+
|
| 74 |
+
report.append("\nModel Loading:")
|
| 75 |
+
report.append(MemoryTracker.format_memory_stats(self.memory_deltas['model_load']))
|
| 76 |
+
|
| 77 |
+
report.append("\nDevice Transfer:")
|
| 78 |
+
report.append(MemoryTracker.format_memory_stats(self.memory_deltas['device_transfer']))
|
| 79 |
+
|
| 80 |
+
if self.inference_memory_stats:
|
| 81 |
+
avg_inference_memory = {
|
| 82 |
+
k: np.mean([stats[k] for stats in self.inference_memory_stats])
|
| 83 |
+
for k in self.inference_memory_stats[0]
|
| 84 |
+
}
|
| 85 |
+
report.append("\nAverage Inference Memory Usage:")
|
| 86 |
+
report.append(MemoryTracker.format_memory_stats(avg_inference_memory))
|
| 87 |
+
|
| 88 |
+
return "\n".join(report)
|
| 89 |
|
| 90 |
def generate_response(self, instruction, max_length=100, temperature=0.7):
|
| 91 |
"""
|
| 92 |
+
Generate a response for a given customer support instruction/query with memory tracking.
|
| 93 |
|
| 94 |
Args:
|
| 95 |
instruction (str): Customer's query or instruction
|
| 96 |
max_length (int): Maximum length of the generated response
|
| 97 |
+
temperature (float): Controls randomness in generation
|
| 98 |
|
| 99 |
Returns:
|
| 100 |
+
tuple: (Generated response, Memory usage statistics)
|
| 101 |
"""
|
| 102 |
+
# Record pre-inference memory
|
| 103 |
+
pre_inference_memory = MemoryTracker.get_memory_usage()
|
| 104 |
|
| 105 |
+
# Format and tokenize input
|
| 106 |
+
input_text = f"Instruction: {instruction}\nResponse:"
|
| 107 |
inputs = self.tokenizer(input_text, return_tensors="pt")
|
| 108 |
inputs = inputs.to(self.device)
|
| 109 |
|
| 110 |
+
# Generate response and track memory
|
| 111 |
+
start_time = time.time()
|
| 112 |
with torch.no_grad():
|
| 113 |
outputs = self.model.generate(
|
| 114 |
**inputs,
|
|
|
|
| 121 |
top_p=0.95,
|
| 122 |
top_k=50
|
| 123 |
)
|
| 124 |
+
inference_time = time.time() - start_time
|
| 125 |
|
| 126 |
+
# Record post-inference memory
|
| 127 |
+
post_inference_memory = MemoryTracker.get_memory_usage()
|
| 128 |
+
|
| 129 |
+
# Calculate memory delta for this inference
|
| 130 |
+
inference_memory_delta = {
|
| 131 |
+
k: post_inference_memory[k] - pre_inference_memory[k]
|
| 132 |
+
for k in pre_inference_memory
|
| 133 |
+
}
|
| 134 |
+
self.inference_memory_stats.append(inference_memory_delta)
|
| 135 |
|
| 136 |
+
# Decode response
|
| 137 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 138 |
response = response.split("Response:")[-1].strip()
|
| 139 |
|
| 140 |
+
return response, {
|
| 141 |
+
'memory_delta': inference_memory_delta,
|
| 142 |
+
'inference_time': inference_time
|
| 143 |
+
}
|
| 144 |
|
| 145 |
def main():
|
| 146 |
# Initialize the bot
|
| 147 |
+
print("Initializing bot and tracking memory usage...")
|
| 148 |
bot = CustomerSupportBot()
|
| 149 |
+
print(bot.get_memory_report())
|
| 150 |
|
| 151 |
# Example queries
|
| 152 |
example_queries = [
|
|
|
|
| 155 |
"I want to return a product.",
|
| 156 |
]
|
| 157 |
|
| 158 |
+
# Generate and print responses with memory stats
|
| 159 |
+
print("\nCustomer Support Bot Demo:\n")
|
| 160 |
for query in example_queries:
|
| 161 |
print(f"Customer: {query}")
|
| 162 |
+
response, stats = bot.generate_response(query)
|
| 163 |
+
print(f"Bot: {response}")
|
| 164 |
+
print(f"Inference Memory Delta: {MemoryTracker.format_memory_stats(stats['memory_delta'])}")
|
| 165 |
+
print(f"Inference Time: {stats['inference_time']:.2f} seconds\n")
|
| 166 |
+
|
| 167 |
# Interactive mode
|
| 168 |
print("Enter your questions (type 'quit' to exit):")
|
| 169 |
while True:
|
| 170 |
query = input("\nYour question: ")
|
| 171 |
if query.lower() == 'quit':
|
| 172 |
break
|
| 173 |
+
|
| 174 |
+
response, stats = bot.generate_response(query)
|
| 175 |
print(f"Bot: {response}")
|
| 176 |
+
print(f"Inference Memory Delta: {MemoryTracker.format_memory_stats(stats['memory_delta'])}")
|
| 177 |
+
print(f"Inference Time: {stats['inference_time']:.2f} seconds")
|
| 178 |
+
|
| 179 |
+
# Print final memory report
|
| 180 |
+
print("\nFinal Memory Report:")
|
| 181 |
+
print(bot.get_memory_report())
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
main()
|