Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,493 Bytes
257f706 ea97ae7 257f706 ea97ae7 257f706 3297c4b 257f706 3297c4b 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 257f706 ea97ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import os
import cv2
from typing import Union, List
import numpy as np
import torch
import onnxruntime
# add at the top with the other typing imports
from typing import Union, List, Optional
from pose2d_utils import (
read_img,
box_convert_simple,
bbox_from_detector,
crop,
keypoints_from_heatmaps,
load_pose_metas_from_kp2ds_seq
)
import json, math, os
def _fmt_box(b):
if b is None: return "None"
return f"[{float(b[0]):.1f},{float(b[1]):.1f},{float(b[2]):.1f},{float(b[3]):.1f}]"
def _draw_box(img, xyxy, color=(0,255,0), thick=2):
if xyxy is None: return img
x1,y1,x2,y2 = [int(v) for v in xyxy[:4]]
x1 = max(0, min(img.shape[1]-1, x1))
x2 = max(0, min(img.shape[1]-1, x2))
y1 = max(0, min(img.shape[0]-1, y1))
y2 = max(0, min(img.shape[0]-1, y2))
cv2.rectangle(img, (x1,y1), (x2,y2), color, thick)
return img
def _put_text(img, text, org=(5,20)):
cv2.putText(img, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2, cv2.LINE_AA)
cv2.putText(img, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 1, cv2.LINE_AA)
return img
def _ensure_dir(path):
if path and not os.path.isdir(path):
os.makedirs(path, exist_ok=True)
# add near the other helpers in pose2d.py
def _mask_to_xyxy(mask, min_area=10):
# mask: (H,W), dtype bool or uint8
ys, xs = np.where(mask > 0)
if len(xs) == 0 or len(ys) == 0:
return None
x1, x2 = xs.min(), xs.max()
y1, y2 = ys.min(), ys.max()
# ensure at least 1px thick and meets a tiny area to avoid noise
if (x2 - x1 + 1) * (y2 - y1 + 1) < min_area:
return None
return np.array([x1, y1, x2, y2], dtype=float)
def _normalize_bbx_input(bbx, num_frames):
"""
Accepts:
- None
- single bbox [x1,y1,x2,y2]
- list/np.ndarray of per-frame bboxes (N,4)
- single mask (H,W) -> applied to all frames
- list of per-frame masks (N,H,W)
Returns: list length N of either None or [x1,y1,x2,y2] per frame
"""
if bbx is None:
return [None] * num_frames
# numpy?
if isinstance(bbx, np.ndarray):
if bbx.ndim == 1 and bbx.size == 4:
return [bbx.astype(float)] * num_frames
if bbx.ndim == 2 and bbx.shape[1] == 4:
# per-frame bboxes
out = []
for i in range(num_frames):
out.append(bbx[i].astype(float) if i < len(bbx) else bbx[-1].astype(float))
return out
if bbx.ndim == 2:
# single 2-D mask (H,W)
xyxy = _mask_to_xyxy(bbx)
return [xyxy] * num_frames
if bbx.ndim == 3:
# list of masks (N,H,W)
out = []
for i in range(num_frames):
m = bbx[i] if i < len(bbx) else bbx[-1]
out.append(_mask_to_xyxy(m))
return out
# python list?
if isinstance(bbx, list):
# list of 4-number bbox?
if len(bbx) == 4 and all(isinstance(v, (int, float, np.integer, np.floating)) for v in bbx):
return [np.array(bbx, dtype=float)] * num_frames
# list of per-frame entries (bboxes or masks)
out = []
for i in range(num_frames):
entry = bbx[i] if i < len(bbx) else bbx[-1]
entry = np.array(entry)
if entry.ndim == 1 and entry.size == 4:
out.append(entry.astype(float))
else:
# assume mask-like
out.append(_mask_to_xyxy(entry))
return out
# fallback: treat as single bbox
bbx_np = np.array(bbx).reshape(-1)
if bbx_np.size >= 4:
return [bbx_np[:4].astype(float)] * num_frames
return [None] * num_frames
class SimpleOnnxInference(object):
def __init__(self, checkpoint, device='cuda', reverse_input=False, **kwargs):
if isinstance(device, str):
device = torch.device(device)
if device.type == 'cuda':
device = '{}:{}'.format(device.type, device.index)
providers = [("CUDAExecutionProvider", {"device_id": device[-1:] if device[-1] in [str(_i) for _i in range(10)] else "0"}), "CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
self.device = device
if not os.path.exists(checkpoint):
raise RuntimeError("{} is not existed!".format(checkpoint))
if os.path.isdir(checkpoint):
checkpoint = os.path.join(checkpoint, 'end2end.onnx')
self.session = onnxruntime.InferenceSession(checkpoint,
providers=providers
)
self.input_name = self.session.get_inputs()[0].name
self.output_name = self.session.get_outputs()[0].name
self.input_resolution = self.session.get_inputs()[0].shape[2:] if not reverse_input else self.session.get_inputs()[0].shape[2:][::-1]
self.input_resolution = np.array(self.input_resolution)
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def get_output_names(self):
output_names = []
for node in self.session.get_outputs():
output_names.append(node.name)
return output_names
def set_device(self, device):
if isinstance(device, str):
device = torch.device(device)
if device.type == 'cuda':
device = '{}:{}'.format(device.type, device.index)
providers = [("CUDAExecutionProvider", {"device_id": device[-1:] if device[-1] in [str(_i) for _i in range(10)] else "0"}), "CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
self.session.set_providers(providers)
self.device = device
class Yolo(SimpleOnnxInference):
def __init__(self, checkpoint, device='cuda', threshold_conf=0.05, threshold_multi_persons=0.1, input_resolution=(640, 640), threshold_iou=0.5, threshold_bbox_shape_ratio=0.4, cat_id=[1], select_type='max', strict=True, sorted_func=None, **kwargs):
super(Yolo, self).__init__(checkpoint, device=device, **kwargs)
model_inputs = self.session.get_inputs()
input_shape = model_inputs[0].shape
self.input_width = 640
self.input_height = 640
self.threshold_multi_persons = threshold_multi_persons
self.threshold_conf = threshold_conf
self.threshold_iou = threshold_iou
self.threshold_bbox_shape_ratio = threshold_bbox_shape_ratio
self.input_resolution = input_resolution
self.cat_id = cat_id
self.select_type = select_type
self.strict = strict
self.sorted_func = sorted_func
def preprocess(self, input_image):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
img = read_img(input_image)
# Get the height and width of the input image
img_height, img_width = img.shape[:2]
# Resize the image to match the input shape
img = cv2.resize(img, (self.input_resolution[1], self.input_resolution[0]))
# Normalize the image data by dividing it by 255.0
image_data = np.array(img) / 255.0
# Transpose the image to have the channel dimension as the first dimension
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
# Expand the dimensions of the image data to match the expected input shape
# image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
image_data = image_data.astype(np.float32)
# Return the preprocessed image data
return image_data, np.array([img_height, img_width])
def postprocess(self, output, shape_raw, cat_id=[1]):
"""
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
Args:
input_image (numpy.ndarray): The input image.
output (numpy.ndarray): The output of the model.
Returns:
numpy.ndarray: The input image with detections drawn on it.
"""
# Transpose and squeeze the output to match the expected shape
outputs = np.squeeze(output)
if len(outputs.shape) == 1:
outputs = outputs[None]
if output.shape[-1] != 6 and output.shape[1] == 84:
outputs = np.transpose(outputs)
# Get the number of rows in the outputs array
rows = outputs.shape[0]
# Calculate the scaling factors for the bounding box coordinates
x_factor = shape_raw[1] / self.input_width
y_factor = shape_raw[0] / self.input_height
# Lists to store the bounding boxes, scores, and class IDs of the detections
boxes = []
scores = []
class_ids = []
if outputs.shape[-1] == 6:
max_scores = outputs[:, 4]
classid = outputs[:, -1]
threshold_conf_masks = max_scores >= self.threshold_conf
classid_masks = classid[threshold_conf_masks] != 3.14159
max_scores = max_scores[threshold_conf_masks][classid_masks]
classid = classid[threshold_conf_masks][classid_masks]
boxes = outputs[:, :4][threshold_conf_masks][classid_masks]
boxes[:, [0, 2]] *= x_factor
boxes[:, [1, 3]] *= y_factor
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes = boxes.astype(np.int32)
else:
classes_scores = outputs[:, 4:]
max_scores = np.amax(classes_scores, -1)
threshold_conf_masks = max_scores >= self.threshold_conf
classid = np.argmax(classes_scores[threshold_conf_masks], -1)
classid_masks = classid!=3.14159
classes_scores = classes_scores[threshold_conf_masks][classid_masks]
max_scores = max_scores[threshold_conf_masks][classid_masks]
classid = classid[classid_masks]
xywh = outputs[:, :4][threshold_conf_masks][classid_masks]
x = xywh[:, 0:1]
y = xywh[:, 1:2]
w = xywh[:, 2:3]
h = xywh[:, 3:4]
left = ((x - w / 2) * x_factor)
top = ((y - h / 2) * y_factor)
width = (w * x_factor)
height = (h * y_factor)
boxes = np.concatenate([left, top, width, height], axis=-1).astype(np.int32)
boxes = boxes.tolist()
scores = max_scores.tolist()
class_ids = classid.tolist()
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv2.dnn.NMSBoxes(boxes, scores, self.threshold_conf, self.threshold_iou)
# Iterate over the selected indices after non-maximum suppression
results = []
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = box_convert_simple(boxes[i], 'xywh2xyxy')
score = scores[i]
class_id = class_ids[i]
results.append(box + [score] + [class_id])
# # Draw the detection on the input image
# Return the modified input image
return np.array(results)
def process_results(self, results, shape_raw, cat_id=[1], single_person=False):
if isinstance(results, tuple):
det_results = results[0]
else:
det_results = results
person_results = []
person_count = 0
if len(results):
max_idx = -1
max_bbox_size = shape_raw[0] * shape_raw[1] * -10
max_bbox_shape = -1
bboxes = []
idx_list = []
for i in range(results.shape[0]):
bbox = results[i]
if (bbox[-1] + 1 in cat_id) and (bbox[-2] > self.threshold_conf):
idx_list.append(i)
bbox_shape = max((bbox[2] - bbox[0]), ((bbox[3] - bbox[1])))
if bbox_shape > max_bbox_shape:
max_bbox_shape = bbox_shape
results = results[idx_list]
for i in range(results.shape[0]):
bbox = results[i]
bboxes.append(bbox)
if self.select_type == 'max':
bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1]))
elif self.select_type == 'center':
bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1
bbox_shape = max((bbox[2] - bbox[0]), ((bbox[3] - bbox[1])))
if bbox_size > max_bbox_size:
if (self.strict or max_idx != -1) and bbox_shape < max_bbox_shape * self.threshold_bbox_shape_ratio:
continue
max_bbox_size = bbox_size
max_bbox_shape = bbox_shape
max_idx = i
if self.sorted_func is not None and len(bboxes) > 0:
max_idx = self.sorted_func(bboxes, shape_raw)
bbox = bboxes[max_idx]
if self.select_type == 'max':
max_bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1]))
elif self.select_type == 'center':
max_bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1
if max_idx != -1:
person_count = 1
if max_idx != -1:
person = {}
person['bbox'] = results[max_idx, :5]
person['track_id'] = int(0)
person_results.append(person)
for i in range(results.shape[0]):
bbox = results[i]
if (bbox[-1] + 1 in cat_id) and (bbox[-2] > self.threshold_conf):
if self.select_type == 'max':
bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1]))
elif self.select_type == 'center':
bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1
if i != max_idx and bbox_size > max_bbox_size * self.threshold_multi_persons and bbox_size < max_bbox_size:
person_count += 1
if not single_person:
person = {}
person['bbox'] = results[i, :5]
person['track_id'] = int(person_count - 1)
person_results.append(person)
return person_results
else:
return None
def postprocess_threading(self, outputs, shape_raw, person_results, i, single_person=False, **kwargs):
result = self.postprocess(outputs[i], shape_raw[i], cat_id=self.cat_id)
result = self.process_results(result, shape_raw[i], cat_id=self.cat_id, single_person=single_person)
if result is not None and len(result) != 0:
person_results[i] = result
def forward(self, img, shape_raw, **kwargs):
"""
Performs inference using an ONNX model and returns the output image with drawn detections.
Returns:
output_img: The output image with drawn detections.
"""
if isinstance(img, torch.Tensor):
img = img.cpu().numpy()
shape_raw = shape_raw.cpu().numpy()
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img})[0]
person_results = [[{'bbox': np.array([0., 0., 1.*shape_raw[i][1], 1.*shape_raw[i][0], -1]), 'track_id': -1}] for i in range(len(outputs))]
for i in range(len(outputs)):
self.postprocess_threading(outputs, shape_raw, person_results, i, **kwargs)
return person_results
class ViTPose(SimpleOnnxInference):
def __init__(self, checkpoint, device='cuda', **kwargs):
super(ViTPose, self).__init__(checkpoint, device=device)
def forward(self, img, center, scale, **kwargs):
heatmaps = self.session.run([], {self.session.get_inputs()[0].name: img})[0]
points, prob = keypoints_from_heatmaps(heatmaps=heatmaps,
center=center,
scale=scale*200,
unbiased=True,
use_udp=False)
return np.concatenate([points, prob], axis=2)
@staticmethod
def preprocess(img, bbox=None, input_resolution=(256, 192), rescale=1.25, mask=None, **kwargs):
if bbox is None or bbox[-1] <= 0 or (bbox[2] - bbox[0]) < 10 or (bbox[3] - bbox[1]) < 10:
bbox = np.array([0, 0, img.shape[1], img.shape[0]])
bbox_xywh = bbox
if mask is not None:
img = np.where(mask>128, img, mask)
if isinstance(input_resolution, int):
center, scale = bbox_from_detector(bbox_xywh, (input_resolution, input_resolution), rescale=rescale)
img, new_shape, old_xy, new_xy = crop(img, center, scale, (input_resolution, input_resolution))
else:
center, scale = bbox_from_detector(bbox_xywh, input_resolution, rescale=rescale)
img, new_shape, old_xy, new_xy = crop(img, center, scale, (input_resolution[0], input_resolution[1]))
IMG_NORM_MEAN = np.array([0.485, 0.456, 0.406])
IMG_NORM_STD = np.array([0.229, 0.224, 0.225])
img_norm = (img / 255. - IMG_NORM_MEAN) / IMG_NORM_STD
img_norm = img_norm.transpose(2, 0, 1).astype(np.float32)
return img_norm, np.array(center), np.array(scale)
# add this small helper anywhere above Pose2d or as a @staticmethod on Pose2d
def _iou_xyxy(a, b):
# a, b: [x1,y1,x2,y2]
ax1, ay1, ax2, ay2 = a
bx1, by1, bx2, by2 = b
inter_x1 = max(ax1, bx1)
inter_y1 = max(ay1, by1)
inter_x2 = min(ax2, bx2)
inter_y2 = min(ay2, by2)
inter_w = max(0, inter_x2 - inter_x1)
inter_h = max(0, inter_y2 - inter_y1)
inter = inter_w * inter_h
area_a = max(0, ax2 - ax1) * max(0, ay2 - ay1)
area_b = max(0, bx2 - bx1) * max(0, by2 - by1)
denom = area_a + area_b - inter
return inter / denom if denom > 0 else 0.0
class Pose2d:
def __init__(self, checkpoint, detector_checkpoint=None, device='cuda', **kwargs):
if detector_checkpoint is not None:
self.detector = Yolo(detector_checkpoint, device)
else:
self.detector = None
self.model = ViTPose(checkpoint, device)
self.device = device
def load_images(self, inputs):
"""
Load images from various input types.
Args:
inputs (Union[str, np.ndarray, List[np.ndarray]]): Input can be file path,
single image array, or list of image arrays
Returns:
List[np.ndarray]: List of RGB image arrays
Raises:
ValueError: If file format is unsupported or image cannot be read
"""
if isinstance(inputs, str):
if inputs.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
cap = cv2.VideoCapture(inputs)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
cap.release()
images = frames
elif inputs.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
img = cv2.cvtColor(cv2.imread(inputs), cv2.COLOR_BGR2RGB)
if img is None:
raise ValueError(f"Cannot read image: {inputs}")
images = [img]
else:
raise ValueError(f"Unsupported file format: {inputs}")
elif isinstance(inputs, np.ndarray):
images = [cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for image in inputs]
elif isinstance(inputs, list):
images = [cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for image in inputs]
return images
def __call__(
self,
inputs: Union[str, np.ndarray, List[np.ndarray]],
return_image: bool = False,
bbx: Optional[Union[List[float], np.ndarray, List[np.ndarray]]] = None,
debug: bool = False,
debug_dir: Optional[str] = None,
**kwargs
):
images = self.load_images(inputs)
H, W = images[0].shape[:2]
N = len(images)
if debug:
print(f"[Pose2d] N frames: {N}, frame size: {W}x{H}")
if isinstance(bbx, list):
print(f"[Pose2d] bbx is list, len={len(bbx)}; first entry type={type(bbx[0]).__name__ if len(bbx)>0 else 'empty'}")
elif isinstance(bbx, np.ndarray):
print(f"[Pose2d] bbx is np.ndarray, shape={bbx.shape}, dtype={bbx.dtype}")
else:
print(f"[Pose2d] bbx type: {type(bbx).__name__}")
_ensure_dir(debug_dir)
# 1) detector per frame (if available)
det_persons_per_img = None
if self.detector is not None:
det_persons_per_img = []
for fi, _image in enumerate(images):
det_in, shape = self.detector.preprocess(_image)
persons = self.detector(det_in[None], shape[None])[0] # list of dicts
det_persons_per_img.append(persons)
if debug:
if persons is None:
print(f"[Pose2d][f{fi}] detector -> None")
else:
boxes = [p['bbox'] for p in persons]
print(f"[Pose2d][f{fi}] detector persons: {len(persons)}")
for pi, p in enumerate(persons):
bb = p['bbox']
sc = float(bb[4]) if len(bb) >= 5 else float('nan')
print(f" - det[{pi}]: bbox={_fmt_box(bb[:4])}, score={sc:.3f}, track_id={p.get('track_id', -1)}")
# 2) normalize bbx/masks
bbx_per_frame = _normalize_bbx_input(bbx, N)
if debug:
for fi, b in enumerate(bbx_per_frame):
print(f"[Pose2d][f{fi}] hint_xyxy: {_fmt_box(b)}")
# 3) select bbox per frame
chosen_bboxes = []
for idx, _image in enumerate(images):
if self.detector is None:
chosen_bboxes.append(None)
if debug:
print(f"[Pose2d][f{idx}] detector=None -> using None bbox")
continue
persons = det_persons_per_img[idx]
if not persons:
chosen_bboxes.append(None)
if debug:
print(f"[Pose2d][f{idx}] no detected persons -> using None bbox")
continue
hint_xyxy = bbx_per_frame[idx]
if hint_xyxy is not None and (hint_xyxy is not None and not (np.array(hint_xyxy[:4]) == None).any()):
# IoU against each detected person
ious = []
for p in persons:
iou = _iou_xyxy(np.array(hint_xyxy[:4], dtype=float), np.array(p['bbox'][:4], dtype=float))
ious.append(iou)
best_idx = int(np.argmax(ious))
best = persons[best_idx]
chosen_bboxes.append(best['bbox'])
if debug:
print(f"[Pose2d][f{idx}] IoUs vs hint: {['{:.3f}'.format(v) for v in ious]}")
print(f"[Pose2d][f{idx}] chosen det[{best_idx}] -> {_fmt_box(best['bbox'][:4])}")
else:
chosen_bboxes.append(persons[0]['bbox'])
if debug:
print(f"[Pose2d][f{idx}] no/empty hint -> fallback det[0] {_fmt_box(persons[0]['bbox'][:4])}")
# Optional: write annotated frame
if debug_dir:
rgb = images[idx].copy()
# draw all dets
for p in persons or []:
_draw_box(rgb, p['bbox'][:4], color=(0,255,255))
# draw hint (blue)
if hint_xyxy is not None:
_draw_box(rgb, hint_xyxy[:4], color=(255,0,0))
# draw chosen (green)
_draw_box(rgb, chosen_bboxes[-1][:4], color=(0,255,0))
_put_text(rgb, f"f{idx}: hint={_fmt_box(hint_xyxy)}, chosen={_fmt_box(chosen_bboxes[-1][:4])}")
# convert back to BGR for saving with cv2
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(debug_dir, f"pose2d_dbg_{idx:04d}.jpg"), bgr)
# 4) Pose on chosen boxes
kp2ds = []
for idx, (_image, _bbox) in enumerate(zip(images, chosen_bboxes)):
if debug:
print(f"[Pose2d][f{idx}] preprocess with bbox={_fmt_box(_bbox[:4] if _bbox is not None else None)}")
img, center, scale = self.model.preprocess(_image, _bbox)
out = self.model(img[None], center[None], scale[None])
kp2ds.append(out)
if debug:
print(f"[Pose2d][f{idx}] kp shape: {out.shape}")
kp2ds = np.concatenate(kp2ds, 0)
metas = load_pose_metas_from_kp2ds_seq(kp2ds, width=W, height=H)
if debug:
print(f"[Pose2d] metas frames: {len(metas)}")
if len(metas) > 0 and 'keypoints2d' in metas[0]:
print(f"[Pose2d] first frame keypoints2d shape: {np.array(metas[0]['keypoints2d']).shape}")
return metas
|