# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import warnings import cv2 import numpy as np from typing import List from PIL import Image def box_convert_simple(box, convert_type='xyxy2xywh'): if convert_type == 'xyxy2xywh': return [box[0], box[1], box[2] - box[0], box[3] - box[1]] elif convert_type == 'xywh2xyxy': return [box[0], box[1], box[2] + box[0], box[3] + box[1]] elif convert_type == 'xyxy2ctwh': return [(box[0] + box[2]) / 2, (box[1] + box[3]) / 2, box[2] - box[0], box[3] - box[1]] elif convert_type == 'ctwh2xyxy': return [box[0] - box[2] // 2, box[1] - box[3] // 2, box[0] + (box[2] - box[2] // 2), box[1] + (box[3] - box[3] // 2)] def read_img(image, convert='RGB', check_exist=False): if isinstance(image, str): if check_exist and not osp.exists(image): return None try: img = Image.open(image) if convert: img = img.convert(convert) except: raise IOError('File error: ', image) return np.asarray(img) else: if isinstance(image, np.ndarray): if convert: return image[..., ::-1] else: if convert: img = img.convert(convert) return np.asarray(img) class AAPoseMeta: def __init__(self, meta=None, kp2ds=None): self.image_id = "" self.height = 0 self.width = 0 self.kps_body: np.ndarray = None self.kps_lhand: np.ndarray = None self.kps_rhand: np.ndarray = None self.kps_face: np.ndarray = None self.kps_body_p: np.ndarray = None self.kps_lhand_p: np.ndarray = None self.kps_rhand_p: np.ndarray = None self.kps_face_p: np.ndarray = None if meta is not None: self.load_from_meta(meta) elif kp2ds is not None: self.load_from_kp2ds(kp2ds) def is_valid(self, kp, p, threshold): x, y = kp if x < 0 or y < 0 or x > self.width or y > self.height or p < threshold: return False else: return True def get_bbox(self, kp, kp_p, threshold=0.5): kps = kp[kp_p > threshold] if kps.size == 0: return 0, 0, 0, 0 x0, y0 = kps.min(axis=0) x1, y1 = kps.max(axis=0) return x0, y0, x1, y1 def crop(self, x0, y0, x1, y1): all_kps = [self.kps_body, self.kps_lhand, self.kps_rhand, self.kps_face] for kps in all_kps: if kps is not None: kps[:, 0] -= x0 kps[:, 1] -= y0 self.width = x1 - x0 self.height = y1 - y0 return self def resize(self, width, height): scale_x = width / self.width scale_y = height / self.height all_kps = [self.kps_body, self.kps_lhand, self.kps_rhand, self.kps_face] for kps in all_kps: if kps is not None: kps[:, 0] *= scale_x kps[:, 1] *= scale_y self.width = width self.height = height return self def get_kps_body_with_p(self, normalize=False): kps_body = self.kps_body.copy() if normalize: kps_body = kps_body / np.array([self.width, self.height]) return np.concatenate([kps_body, self.kps_body_p[:, None]]) @staticmethod def from_kps_face(kps_face: np.ndarray, height: int, width: int): pose_meta = AAPoseMeta() pose_meta.kps_face = kps_face[:, :2] if kps_face.shape[1] == 3: pose_meta.kps_face_p = kps_face[:, 2] else: pose_meta.kps_face_p = kps_face[:, 0] * 0 + 1 pose_meta.height = height pose_meta.width = width return pose_meta @staticmethod def from_kps_body(kps_body: np.ndarray, height: int, width: int): pose_meta = AAPoseMeta() pose_meta.kps_body = kps_body[:, :2] pose_meta.kps_body_p = kps_body[:, 2] pose_meta.height = height pose_meta.width = width return pose_meta @staticmethod def from_humanapi_meta(meta): pose_meta = AAPoseMeta() width, height = meta["width"], meta["height"] pose_meta.width = width pose_meta.height = height pose_meta.kps_body = meta["keypoints_body"][:, :2] * (width, height) pose_meta.kps_body_p = meta["keypoints_body"][:, 2] pose_meta.kps_lhand = meta["keypoints_left_hand"][:, :2] * (width, height) pose_meta.kps_lhand_p = meta["keypoints_left_hand"][:, 2] pose_meta.kps_rhand = meta["keypoints_right_hand"][:, :2] * (width, height) pose_meta.kps_rhand_p = meta["keypoints_right_hand"][:, 2] if 'keypoints_face' in meta: pose_meta.kps_face = meta["keypoints_face"][:, :2] * (width, height) pose_meta.kps_face_p = meta["keypoints_face"][:, 2] return pose_meta def load_from_meta(self, meta, norm_body=True, norm_hand=False): self.image_id = meta.get("image_id", "00000.png") self.height = meta["height"] self.width = meta["width"] kps_body_p = [] kps_body = [] for kp in meta["keypoints_body"]: if kp is None: kps_body.append([0, 0]) kps_body_p.append(0) else: kps_body.append(kp) kps_body_p.append(1) self.kps_body = np.array(kps_body) self.kps_body[:, 0] *= self.width self.kps_body[:, 1] *= self.height self.kps_body_p = np.array(kps_body_p) self.kps_lhand = np.array(meta["keypoints_left_hand"])[:, :2] self.kps_lhand_p = np.array(meta["keypoints_left_hand"])[:, 2] self.kps_rhand = np.array(meta["keypoints_right_hand"])[:, :2] self.kps_rhand_p = np.array(meta["keypoints_right_hand"])[:, 2] @staticmethod def load_from_kp2ds(kp2ds: List[np.ndarray], width: int, height: int): """input 133x3 numpy keypoints and output AAPoseMeta Args: kp2ds (List[np.ndarray]): _description_ width (int): _description_ height (int): _description_ Returns: _type_: _description_ """ pose_meta = AAPoseMeta() pose_meta.width = width pose_meta.height = height kps_body = (kp2ds[[0, 6, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3, 17, 20]] + kp2ds[[0, 5, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3, 18, 21]]) / 2 kps_lhand = kp2ds[91:112] kps_rhand = kp2ds[112:133] kps_face = np.concatenate([kp2ds[23:23+68], kp2ds[1:3]], axis=0) pose_meta.kps_body = kps_body[:, :2] pose_meta.kps_body_p = kps_body[:, 2] pose_meta.kps_lhand = kps_lhand[:, :2] pose_meta.kps_lhand_p = kps_lhand[:, 2] pose_meta.kps_rhand = kps_rhand[:, :2] pose_meta.kps_rhand_p = kps_rhand[:, 2] pose_meta.kps_face = kps_face[:, :2] pose_meta.kps_face_p = kps_face[:, 2] return pose_meta @staticmethod def from_dwpose(dwpose_det_res, height, width): pose_meta = AAPoseMeta() pose_meta.kps_body = dwpose_det_res["bodies"]["candidate"] pose_meta.kps_body_p = dwpose_det_res["bodies"]["score"] pose_meta.kps_body[:, 0] *= width pose_meta.kps_body[:, 1] *= height pose_meta.kps_lhand, pose_meta.kps_rhand = dwpose_det_res["hands"] pose_meta.kps_lhand[:, 0] *= width pose_meta.kps_lhand[:, 1] *= height pose_meta.kps_rhand[:, 0] *= width pose_meta.kps_rhand[:, 1] *= height pose_meta.kps_lhand_p, pose_meta.kps_rhand_p = dwpose_det_res["hands_score"] pose_meta.kps_face = dwpose_det_res["faces"][0] pose_meta.kps_face[:, 0] *= width pose_meta.kps_face[:, 1] *= height pose_meta.kps_face_p = dwpose_det_res["faces_score"][0] return pose_meta def save_json(self): pass def draw_aapose(self, img, threshold=0.5, stick_width_norm=200, draw_hand=True, draw_head=True): from .human_visualization import draw_aapose_by_meta return draw_aapose_by_meta(img, self, threshold, stick_width_norm, draw_hand, draw_head) def translate(self, x0, y0): all_kps = [self.kps_body, self.kps_lhand, self.kps_rhand, self.kps_face] for kps in all_kps: if kps is not None: kps[:, 0] -= x0 kps[:, 1] -= y0 def scale(self, sx, sy): all_kps = [self.kps_body, self.kps_lhand, self.kps_rhand, self.kps_face] for kps in all_kps: if kps is not None: kps[:, 0] *= sx kps[:, 1] *= sy def padding_resize2(self, height=512, width=512): """kps will be changed inplace """ all_kps = [self.kps_body, self.kps_lhand, self.kps_rhand, self.kps_face] ori_height, ori_width = self.height, self.width if (ori_height / ori_width) > (height / width): new_width = int(height / ori_height * ori_width) padding = int((width - new_width) / 2) padding_width = padding padding_height = 0 scale = height / ori_height for kps in all_kps: if kps is not None: kps[:, 0] = kps[:, 0] * scale + padding kps[:, 1] = kps[:, 1] * scale else: new_height = int(width / ori_width * ori_height) padding = int((height - new_height) / 2) padding_width = 0 padding_height = padding scale = width / ori_width for kps in all_kps: if kps is not None: kps[:, 1] = kps[:, 1] * scale + padding kps[:, 0] = kps[:, 0] * scale self.width = width self.height = height return self def transform_preds(coords, center, scale, output_size, use_udp=False): """Get final keypoint predictions from heatmaps and apply scaling and translation to map them back to the image. Note: num_keypoints: K Args: coords (np.ndarray[K, ndims]): * If ndims=2, corrds are predicted keypoint location. * If ndims=4, corrds are composed of (x, y, scores, tags) * If ndims=5, corrds are composed of (x, y, scores, tags, flipped_tags) center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. use_udp (bool): Use unbiased data processing Returns: np.ndarray: Predicted coordinates in the images. """ assert coords.shape[1] in (2, 4, 5) assert len(center) == 2 assert len(scale) == 2 assert len(output_size) == 2 # Recover the scale which is normalized by a factor of 200. # scale = scale * 200.0 if use_udp: scale_x = scale[0] / (output_size[0] - 1.0) scale_y = scale[1] / (output_size[1] - 1.0) else: scale_x = scale[0] / output_size[0] scale_y = scale[1] / output_size[1] target_coords = np.ones_like(coords) target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5 target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5 return target_coords def _calc_distances(preds, targets, mask, normalize): """Calculate the normalized distances between preds and target. Note: batch_size: N num_keypoints: K dimension of keypoints: D (normally, D=2 or D=3) Args: preds (np.ndarray[N, K, D]): Predicted keypoint location. targets (np.ndarray[N, K, D]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. normalize (np.ndarray[N, D]): Typical value is heatmap_size Returns: np.ndarray[K, N]: The normalized distances. \ If target keypoints are missing, the distance is -1. """ N, K, _ = preds.shape # set mask=0 when normalize==0 _mask = mask.copy() _mask[np.where((normalize == 0).sum(1))[0], :] = False distances = np.full((N, K), -1, dtype=np.float32) # handle invalid values normalize[np.where(normalize <= 0)] = 1e6 distances[_mask] = np.linalg.norm( ((preds - targets) / normalize[:, None, :])[_mask], axis=-1) return distances.T def _distance_acc(distances, thr=0.5): """Return the percentage below the distance threshold, while ignoring distances values with -1. Note: batch_size: N Args: distances (np.ndarray[N, ]): The normalized distances. thr (float): Threshold of the distances. Returns: float: Percentage of distances below the threshold. \ If all target keypoints are missing, return -1. """ distance_valid = distances != -1 num_distance_valid = distance_valid.sum() if num_distance_valid > 0: return (distances[distance_valid] < thr).sum() / num_distance_valid return -1 def _get_max_preds(heatmaps): """Get keypoint predictions from score maps. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps. Returns: tuple: A tuple containing aggregated results. - preds (np.ndarray[N, K, 2]): Predicted keypoint location. - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints. """ assert isinstance(heatmaps, np.ndarray), ('heatmaps should be numpy.ndarray') assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' N, K, _, W = heatmaps.shape heatmaps_reshaped = heatmaps.reshape((N, K, -1)) idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1)) maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = preds[:, :, 0] % W preds[:, :, 1] = preds[:, :, 1] // W preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1) return preds, maxvals def _get_max_preds_3d(heatmaps): """Get keypoint predictions from 3D score maps. Note: batch size: N num keypoints: K heatmap depth size: D heatmap height: H heatmap width: W Args: heatmaps (np.ndarray[N, K, D, H, W]): model predicted heatmaps. Returns: tuple: A tuple containing aggregated results. - preds (np.ndarray[N, K, 3]): Predicted keypoint location. - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints. """ assert isinstance(heatmaps, np.ndarray), \ ('heatmaps should be numpy.ndarray') assert heatmaps.ndim == 5, 'heatmaps should be 5-ndim' N, K, D, H, W = heatmaps.shape heatmaps_reshaped = heatmaps.reshape((N, K, -1)) idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1)) maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1)) preds = np.zeros((N, K, 3), dtype=np.float32) _idx = idx[..., 0] preds[..., 2] = _idx // (H * W) preds[..., 1] = (_idx // W) % H preds[..., 0] = _idx % W preds = np.where(maxvals > 0.0, preds, -1) return preds, maxvals def pose_pck_accuracy(output, target, mask, thr=0.05, normalize=None): """Calculate the pose accuracy of PCK for each individual keypoint and the averaged accuracy across all keypoints from heatmaps. Note: PCK metric measures accuracy of the localization of the body joints. The distances between predicted positions and the ground-truth ones are typically normalized by the bounding box size. The threshold (thr) of the normalized distance is commonly set as 0.05, 0.1 or 0.2 etc. - batch_size: N - num_keypoints: K - heatmap height: H - heatmap width: W Args: output (np.ndarray[N, K, H, W]): Model output heatmaps. target (np.ndarray[N, K, H, W]): Groundtruth heatmaps. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. thr (float): Threshold of PCK calculation. Default 0.05. normalize (np.ndarray[N, 2]): Normalization factor for H&W. Returns: tuple: A tuple containing keypoint accuracy. - np.ndarray[K]: Accuracy of each keypoint. - float: Averaged accuracy across all keypoints. - int: Number of valid keypoints. """ N, K, H, W = output.shape if K == 0: return None, 0, 0 if normalize is None: normalize = np.tile(np.array([[H, W]]), (N, 1)) pred, _ = _get_max_preds(output) gt, _ = _get_max_preds(target) return keypoint_pck_accuracy(pred, gt, mask, thr, normalize) def keypoint_pck_accuracy(pred, gt, mask, thr, normalize): """Calculate the pose accuracy of PCK for each individual keypoint and the averaged accuracy across all keypoints for coordinates. Note: PCK metric measures accuracy of the localization of the body joints. The distances between predicted positions and the ground-truth ones are typically normalized by the bounding box size. The threshold (thr) of the normalized distance is commonly set as 0.05, 0.1 or 0.2 etc. - batch_size: N - num_keypoints: K Args: pred (np.ndarray[N, K, 2]): Predicted keypoint location. gt (np.ndarray[N, K, 2]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. thr (float): Threshold of PCK calculation. normalize (np.ndarray[N, 2]): Normalization factor for H&W. Returns: tuple: A tuple containing keypoint accuracy. - acc (np.ndarray[K]): Accuracy of each keypoint. - avg_acc (float): Averaged accuracy across all keypoints. - cnt (int): Number of valid keypoints. """ distances = _calc_distances(pred, gt, mask, normalize) acc = np.array([_distance_acc(d, thr) for d in distances]) valid_acc = acc[acc >= 0] cnt = len(valid_acc) avg_acc = valid_acc.mean() if cnt > 0 else 0 return acc, avg_acc, cnt def keypoint_auc(pred, gt, mask, normalize, num_step=20): """Calculate the pose accuracy of PCK for each individual keypoint and the averaged accuracy across all keypoints for coordinates. Note: - batch_size: N - num_keypoints: K Args: pred (np.ndarray[N, K, 2]): Predicted keypoint location. gt (np.ndarray[N, K, 2]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. normalize (float): Normalization factor. Returns: float: Area under curve. """ nor = np.tile(np.array([[normalize, normalize]]), (pred.shape[0], 1)) x = [1.0 * i / num_step for i in range(num_step)] y = [] for thr in x: _, avg_acc, _ = keypoint_pck_accuracy(pred, gt, mask, thr, nor) y.append(avg_acc) auc = 0 for i in range(num_step): auc += 1.0 / num_step * y[i] return auc def keypoint_nme(pred, gt, mask, normalize_factor): """Calculate the normalized mean error (NME). Note: - batch_size: N - num_keypoints: K Args: pred (np.ndarray[N, K, 2]): Predicted keypoint location. gt (np.ndarray[N, K, 2]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. normalize_factor (np.ndarray[N, 2]): Normalization factor. Returns: float: normalized mean error """ distances = _calc_distances(pred, gt, mask, normalize_factor) distance_valid = distances[distances != -1] return distance_valid.sum() / max(1, len(distance_valid)) def keypoint_epe(pred, gt, mask): """Calculate the end-point error. Note: - batch_size: N - num_keypoints: K Args: pred (np.ndarray[N, K, 2]): Predicted keypoint location. gt (np.ndarray[N, K, 2]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. Returns: float: Average end-point error. """ distances = _calc_distances( pred, gt, mask, np.ones((pred.shape[0], pred.shape[2]), dtype=np.float32)) distance_valid = distances[distances != -1] return distance_valid.sum() / max(1, len(distance_valid)) def _taylor(heatmap, coord): """Distribution aware coordinate decoding method. Note: - heatmap height: H - heatmap width: W Args: heatmap (np.ndarray[H, W]): Heatmap of a particular joint type. coord (np.ndarray[2,]): Coordinates of the predicted keypoints. Returns: np.ndarray[2,]: Updated coordinates. """ H, W = heatmap.shape[:2] px, py = int(coord[0]), int(coord[1]) if 1 < px < W - 2 and 1 < py < H - 2: dx = 0.5 * (heatmap[py][px + 1] - heatmap[py][px - 1]) dy = 0.5 * (heatmap[py + 1][px] - heatmap[py - 1][px]) dxx = 0.25 * ( heatmap[py][px + 2] - 2 * heatmap[py][px] + heatmap[py][px - 2]) dxy = 0.25 * ( heatmap[py + 1][px + 1] - heatmap[py - 1][px + 1] - heatmap[py + 1][px - 1] + heatmap[py - 1][px - 1]) dyy = 0.25 * ( heatmap[py + 2 * 1][px] - 2 * heatmap[py][px] + heatmap[py - 2 * 1][px]) derivative = np.array([[dx], [dy]]) hessian = np.array([[dxx, dxy], [dxy, dyy]]) if dxx * dyy - dxy**2 != 0: hessianinv = np.linalg.inv(hessian) offset = -hessianinv @ derivative offset = np.squeeze(np.array(offset.T), axis=0) coord += offset return coord def post_dark_udp(coords, batch_heatmaps, kernel=3): """DARK post-pocessing. Implemented by udp. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). Note: - batch size: B - num keypoints: K - num persons: N - height of heatmaps: H - width of heatmaps: W B=1 for bottom_up paradigm where all persons share the same heatmap. B=N for top_down paradigm where each person has its own heatmaps. Args: coords (np.ndarray[N, K, 2]): Initial coordinates of human pose. batch_heatmaps (np.ndarray[B, K, H, W]): batch_heatmaps kernel (int): Gaussian kernel size (K) for modulation. Returns: np.ndarray([N, K, 2]): Refined coordinates. """ if not isinstance(batch_heatmaps, np.ndarray): batch_heatmaps = batch_heatmaps.cpu().numpy() B, K, H, W = batch_heatmaps.shape N = coords.shape[0] assert (B == 1 or B == N) for heatmaps in batch_heatmaps: for heatmap in heatmaps: cv2.GaussianBlur(heatmap, (kernel, kernel), 0, heatmap) np.clip(batch_heatmaps, 0.001, 50, batch_heatmaps) np.log(batch_heatmaps, batch_heatmaps) batch_heatmaps_pad = np.pad( batch_heatmaps, ((0, 0), (0, 0), (1, 1), (1, 1)), mode='edge').flatten() index = coords[..., 0] + 1 + (coords[..., 1] + 1) * (W + 2) index += (W + 2) * (H + 2) * np.arange(0, B * K).reshape(-1, K) index = index.astype(int).reshape(-1, 1) i_ = batch_heatmaps_pad[index] ix1 = batch_heatmaps_pad[index + 1] iy1 = batch_heatmaps_pad[index + W + 2] ix1y1 = batch_heatmaps_pad[index + W + 3] ix1_y1_ = batch_heatmaps_pad[index - W - 3] ix1_ = batch_heatmaps_pad[index - 1] iy1_ = batch_heatmaps_pad[index - 2 - W] dx = 0.5 * (ix1 - ix1_) dy = 0.5 * (iy1 - iy1_) derivative = np.concatenate([dx, dy], axis=1) derivative = derivative.reshape(N, K, 2, 1) dxx = ix1 - 2 * i_ + ix1_ dyy = iy1 - 2 * i_ + iy1_ dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_) hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1) hessian = hessian.reshape(N, K, 2, 2) hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2)) coords -= np.einsum('ijmn,ijnk->ijmk', hessian, derivative).squeeze() return coords def _gaussian_blur(heatmaps, kernel=11): """Modulate heatmap distribution with Gaussian. sigma = 0.3*((kernel_size-1)*0.5-1)+0.8 sigma~=3 if k=17 sigma=2 if k=11; sigma~=1.5 if k=7; sigma~=1 if k=3; Note: - batch_size: N - num_keypoints: K - heatmap height: H - heatmap width: W Args: heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps. kernel (int): Gaussian kernel size (K) for modulation, which should match the heatmap gaussian sigma when training. K=17 for sigma=3 and k=11 for sigma=2. Returns: np.ndarray ([N, K, H, W]): Modulated heatmap distribution. """ assert kernel % 2 == 1 border = (kernel - 1) // 2 batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] height = heatmaps.shape[2] width = heatmaps.shape[3] for i in range(batch_size): for j in range(num_joints): origin_max = np.max(heatmaps[i, j]) dr = np.zeros((height + 2 * border, width + 2 * border), dtype=np.float32) dr[border:-border, border:-border] = heatmaps[i, j].copy() dr = cv2.GaussianBlur(dr, (kernel, kernel), 0) heatmaps[i, j] = dr[border:-border, border:-border].copy() heatmaps[i, j] *= origin_max / np.max(heatmaps[i, j]) return heatmaps def keypoints_from_regression(regression_preds, center, scale, img_size): """Get final keypoint predictions from regression vectors and transform them back to the image. Note: - batch_size: N - num_keypoints: K Args: regression_preds (np.ndarray[N, K, 2]): model prediction. center (np.ndarray[N, 2]): Center of the bounding box (x, y). scale (np.ndarray[N, 2]): Scale of the bounding box wrt height/width. img_size (list(img_width, img_height)): model input image size. Returns: tuple: - preds (np.ndarray[N, K, 2]): Predicted keypoint location in images. - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints. """ N, K, _ = regression_preds.shape preds, maxvals = regression_preds, np.ones((N, K, 1), dtype=np.float32) preds = preds * img_size # Transform back to the image for i in range(N): preds[i] = transform_preds(preds[i], center[i], scale[i], img_size) return preds, maxvals def keypoints_from_heatmaps(heatmaps, center, scale, unbiased=False, post_process='default', kernel=11, valid_radius_factor=0.0546875, use_udp=False, target_type='GaussianHeatmap'): """Get final keypoint predictions from heatmaps and transform them back to the image. Note: - batch size: N - num keypoints: K - heatmap height: H - heatmap width: W Args: heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps. center (np.ndarray[N, 2]): Center of the bounding box (x, y). scale (np.ndarray[N, 2]): Scale of the bounding box wrt height/width. post_process (str/None): Choice of methods to post-process heatmaps. Currently supported: None, 'default', 'unbiased', 'megvii'. unbiased (bool): Option to use unbiased decoding. Mutually exclusive with megvii. Note: this arg is deprecated and unbiased=True can be replaced by post_process='unbiased' Paper ref: Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). kernel (int): Gaussian kernel size (K) for modulation, which should match the heatmap gaussian sigma when training. K=17 for sigma=3 and k=11 for sigma=2. valid_radius_factor (float): The radius factor of the positive area in classification heatmap for UDP. use_udp (bool): Use unbiased data processing. target_type (str): 'GaussianHeatmap' or 'CombinedTarget'. GaussianHeatmap: Classification target with gaussian distribution. CombinedTarget: The combination of classification target (response map) and regression target (offset map). Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Returns: tuple: A tuple containing keypoint predictions and scores. - preds (np.ndarray[N, K, 2]): Predicted keypoint location in images. - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints. """ # Avoid being affected heatmaps = heatmaps.copy() # detect conflicts if unbiased: assert post_process not in [False, None, 'megvii'] if post_process in ['megvii', 'unbiased']: assert kernel > 0 if use_udp: assert not post_process == 'megvii' # normalize configs if post_process is False: warnings.warn( 'post_process=False is deprecated, ' 'please use post_process=None instead', DeprecationWarning) post_process = None elif post_process is True: if unbiased is True: warnings.warn( 'post_process=True, unbiased=True is deprecated,' " please use post_process='unbiased' instead", DeprecationWarning) post_process = 'unbiased' else: warnings.warn( 'post_process=True, unbiased=False is deprecated, ' "please use post_process='default' instead", DeprecationWarning) post_process = 'default' elif post_process == 'default': if unbiased is True: warnings.warn( 'unbiased=True is deprecated, please use ' "post_process='unbiased' instead", DeprecationWarning) post_process = 'unbiased' # start processing if post_process == 'megvii': heatmaps = _gaussian_blur(heatmaps, kernel=kernel) N, K, H, W = heatmaps.shape if use_udp: if target_type.lower() == 'GaussianHeatMap'.lower(): preds, maxvals = _get_max_preds(heatmaps) preds = post_dark_udp(preds, heatmaps, kernel=kernel) elif target_type.lower() == 'CombinedTarget'.lower(): for person_heatmaps in heatmaps: for i, heatmap in enumerate(person_heatmaps): kt = 2 * kernel + 1 if i % 3 == 0 else kernel cv2.GaussianBlur(heatmap, (kt, kt), 0, heatmap) # valid radius is in direct proportion to the height of heatmap. valid_radius = valid_radius_factor * H offset_x = heatmaps[:, 1::3, :].flatten() * valid_radius offset_y = heatmaps[:, 2::3, :].flatten() * valid_radius heatmaps = heatmaps[:, ::3, :] preds, maxvals = _get_max_preds(heatmaps) index = preds[..., 0] + preds[..., 1] * W index += W * H * np.arange(0, N * K / 3) index = index.astype(int).reshape(N, K // 3, 1) preds += np.concatenate((offset_x[index], offset_y[index]), axis=2) else: raise ValueError('target_type should be either ' "'GaussianHeatmap' or 'CombinedTarget'") else: preds, maxvals = _get_max_preds(heatmaps) if post_process == 'unbiased': # alleviate biased coordinate # apply Gaussian distribution modulation. heatmaps = np.log( np.maximum(_gaussian_blur(heatmaps, kernel), 1e-10)) for n in range(N): for k in range(K): preds[n][k] = _taylor(heatmaps[n][k], preds[n][k]) elif post_process is not None: # add +/-0.25 shift to the predicted locations for higher acc. for n in range(N): for k in range(K): heatmap = heatmaps[n][k] px = int(preds[n][k][0]) py = int(preds[n][k][1]) if 1 < px < W - 1 and 1 < py < H - 1: diff = np.array([ heatmap[py][px + 1] - heatmap[py][px - 1], heatmap[py + 1][px] - heatmap[py - 1][px] ]) preds[n][k] += np.sign(diff) * .25 if post_process == 'megvii': preds[n][k] += 0.5 # Transform back to the image for i in range(N): preds[i] = transform_preds( preds[i], center[i], scale[i], [W, H], use_udp=use_udp) if post_process == 'megvii': maxvals = maxvals / 255.0 + 0.5 return preds, maxvals def keypoints_from_heatmaps3d(heatmaps, center, scale): """Get final keypoint predictions from 3d heatmaps and transform them back to the image. Note: - batch size: N - num keypoints: K - heatmap depth size: D - heatmap height: H - heatmap width: W Args: heatmaps (np.ndarray[N, K, D, H, W]): model predicted heatmaps. center (np.ndarray[N, 2]): Center of the bounding box (x, y). scale (np.ndarray[N, 2]): Scale of the bounding box wrt height/width. Returns: tuple: A tuple containing keypoint predictions and scores. - preds (np.ndarray[N, K, 3]): Predicted 3d keypoint location \ in images. - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints. """ N, K, D, H, W = heatmaps.shape preds, maxvals = _get_max_preds_3d(heatmaps) # Transform back to the image for i in range(N): preds[i, :, :2] = transform_preds(preds[i, :, :2], center[i], scale[i], [W, H]) return preds, maxvals def multilabel_classification_accuracy(pred, gt, mask, thr=0.5): """Get multi-label classification accuracy. Note: - batch size: N - label number: L Args: pred (np.ndarray[N, L, 2]): model predicted labels. gt (np.ndarray[N, L, 2]): ground-truth labels. mask (np.ndarray[N, 1] or np.ndarray[N, L] ): reliability of ground-truth labels. Returns: float: multi-label classification accuracy. """ # we only compute accuracy on the samples with ground-truth of all labels. valid = (mask > 0).min(axis=1) if mask.ndim == 2 else (mask > 0) pred, gt = pred[valid], gt[valid] if pred.shape[0] == 0: acc = 0.0 # when no sample is with gt labels, set acc to 0. else: # The classification of a sample is regarded as correct # only if it's correct for all labels. acc = (((pred - thr) * (gt - thr)) > 0).all(axis=1).mean() return acc def get_transform(center, scale, res, rot=0): """Generate transformation matrix.""" # res: (height, width), (rows, cols) crop_aspect_ratio = res[0] / float(res[1]) h = 200 * scale w = h / crop_aspect_ratio t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / w t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / w + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3, 3)) rot_rad = rot * np.pi / 180 sn, cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0, :2] = [cs, -sn] rot_mat[1, :2] = [sn, cs] rot_mat[2, 2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0, 2] = -res[1] / 2 t_mat[1, 2] = -res[0] / 2 t_inv = t_mat.copy() t_inv[:2, 2] *= -1 t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) return t def transform(pt, center, scale, res, invert=0, rot=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T new_pt = np.dot(t, new_pt) return np.array([round(new_pt[0]), round(new_pt[1])], dtype=int) + 1 def bbox_from_detector(bbox, input_resolution=(224, 224), rescale=1.25): """ Get center and scale of bounding box from bounding box. The expected format is [min_x, min_y, max_x, max_y]. """ CROP_IMG_HEIGHT, CROP_IMG_WIDTH = input_resolution CROP_ASPECT_RATIO = CROP_IMG_HEIGHT / float(CROP_IMG_WIDTH) # center center_x = (bbox[0] + bbox[2]) / 2.0 center_y = (bbox[1] + bbox[3]) / 2.0 center = np.array([center_x, center_y]) # scale bbox_w = bbox[2] - bbox[0] bbox_h = bbox[3] - bbox[1] bbox_size = max(bbox_w * CROP_ASPECT_RATIO, bbox_h) scale = np.array([bbox_size / CROP_ASPECT_RATIO, bbox_size]) / 200.0 # scale = bbox_size / 200.0 # adjust bounding box tightness scale *= rescale return center, scale def crop(img, center, scale, res): """ Crop image according to the supplied bounding box. res: [rows, cols] """ # Upper left point ul = np.array(transform([1, 1], center, max(scale), res, invert=1)) - 1 # Bottom right point br = np.array(transform([res[1] + 1, res[0] + 1], center, max(scale), res, invert=1)) - 1 # Padding so that when rotated proper amount of context is included pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(new_shape, dtype=np.float32) # Range to fill new array new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(len(img[0]), br[0]) old_y = max(0, ul[1]), min(len(img), br[1]) try: new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] except Exception as e: print(e) new_img = cv2.resize(new_img, (res[1], res[0])) # (cols, rows) return new_img, new_shape, (old_x, old_y), (new_x, new_y) # , ul, br def split_kp2ds_for_aa(kp2ds, ret_face=False): kp2ds_body = (kp2ds[[0, 6, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3, 17, 20]] + kp2ds[[0, 5, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3, 18, 21]]) / 2 kp2ds_lhand = kp2ds[91:112] kp2ds_rhand = kp2ds[112:133] kp2ds_face = kp2ds[22:91] if ret_face: return kp2ds_body.copy(), kp2ds_lhand.copy(), kp2ds_rhand.copy(), kp2ds_face.copy() return kp2ds_body.copy(), kp2ds_lhand.copy(), kp2ds_rhand.copy() def load_pose_metas_from_kp2ds_seq_list(kp2ds_seq, width, height): metas = [] for kps in kp2ds_seq: if len(kps) != 1: return None kps = kps[0].copy() kps[:, 0] /= width kps[:, 1] /= height kp2ds_body, kp2ds_lhand, kp2ds_rhand, kp2ds_face = split_kp2ds_for_aa(kps, ret_face=True) if kp2ds_body[:, :2].min(axis=1).max() < 0: kp2ds_body = last_kp2ds_body last_kp2ds_body = kp2ds_body meta = { "width": width, "height": height, "keypoints_body": kp2ds_body.tolist(), "keypoints_left_hand": kp2ds_lhand.tolist(), "keypoints_right_hand": kp2ds_rhand.tolist(), "keypoints_face": kp2ds_face.tolist(), } metas.append(meta) return metas def load_pose_metas_from_kp2ds_seq(kp2ds_seq, width, height): metas = [] for kps in kp2ds_seq: kps = kps.copy() kps[:, 0] /= width kps[:, 1] /= height kp2ds_body, kp2ds_lhand, kp2ds_rhand, kp2ds_face = split_kp2ds_for_aa(kps, ret_face=True) # 排除全部小于0的情况 if kp2ds_body[:, :2].min(axis=1).max() < 0: kp2ds_body = last_kp2ds_body last_kp2ds_body = kp2ds_body meta = { "width": width, "height": height, "keypoints_body": kp2ds_body, "keypoints_left_hand": kp2ds_lhand, "keypoints_right_hand": kp2ds_rhand, "keypoints_face": kp2ds_face, } metas.append(meta) return metas