Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| import codecs | |
| import streamlit.components.v1 as components | |
| from utils import inject_custom_css | |
| import streamlit as st | |
| from streamlit_plotly_events import plotly_events | |
| import pickle | |
| import matplotlib.pyplot as plt | |
| import plotly.graph_objects as go | |
| import typing as tp | |
| plt.style.use('default') | |
| shapes=[ | |
| dict( | |
| type="rect", | |
| xref="paper", | |
| yref="paper", | |
| x0=0, | |
| y0=0, | |
| x1=1, | |
| y1=1, | |
| line=dict( | |
| color="Black", | |
| width=2, | |
| ), | |
| ) | |
| ] | |
| import colorsys | |
| def interpolate_color(color1, color2, factor): | |
| """Interpolates between two RGB colors. Factor is between 0 and 1.""" | |
| color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0) | |
| color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0) | |
| new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)] | |
| new_color = colorsys.hls_to_rgb(*new_color) | |
| return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255)) | |
| color1 = "#fa7659" | |
| color2 = "#6dafd7" | |
| def plot_pareto(dict_results: tp.Dict): | |
| keys = list(dict_results["wa"][0].keys()) | |
| lambda_key, reward2_key, reward1_key = keys | |
| # Series for "wa" | |
| dict_results["wa"] = [x for i,x in enumerate(dict_results["wa"]) if i%2==0] | |
| lambda_values_wa = [item[lambda_key] for item in dict_results["wa"]][::-1] | |
| reward1_values_wa = [item[reward1_key] for item in dict_results["wa"]][::-1] | |
| reward2_values_wa = [item[reward2_key] for item in dict_results["wa"]][::-1] | |
| # Series for "init" | |
| reward1_values_init = [item[reward1_key] for item in dict_results["init"]] | |
| reward2_values_init = [item[reward2_key] for item in dict_results["init"]] | |
| layout = go.Layout(autosize=False,width=1000,height=1000) | |
| fig = go.Figure(layout=layout) | |
| for i in range(len(reward1_values_wa) - 1): | |
| fig.add_trace(go.Scatter( | |
| x=reward1_values_wa[i:i+2], | |
| y=reward2_values_wa[i:i+2], | |
| mode='lines', | |
| hoverinfo='skip', | |
| line=dict( | |
| color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)), | |
| width=2 | |
| ), | |
| showlegend=False | |
| )) | |
| # Plot for "wa" | |
| fig.add_trace( | |
| go.Scatter( | |
| x=reward1_values_wa, | |
| y=reward2_values_wa, | |
| mode='markers', | |
| name='Rewarded soups: 0鈮の烩墹1', | |
| hoverinfo='text', | |
| hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa], | |
| marker=dict( | |
| color=[ | |
| interpolate_color(color1, color2, i / len(lambda_values_wa)) | |
| for i in range(len(lambda_values_wa)) | |
| ], | |
| size=10 | |
| ) | |
| ) | |
| ) | |
| # Plot for "morl" | |
| fig.add_trace( | |
| go.Scatter( | |
| x=[6400.], | |
| y=[3300.], | |
| mode='markers', | |
| name='MORL: 渭=0.5', | |
| hoverinfo='skip', | |
| marker=dict(color='#A45EE9', size=15, symbol="star"), | |
| ) | |
| ) | |
| # Plot for "init" | |
| fig.add_trace( | |
| go.Scatter( | |
| x=reward1_values_init, | |
| y=reward2_values_init, | |
| mode='markers', | |
| name='Pre-trained init', | |
| hoverinfo='skip', | |
| marker=dict(color='#9f9bc8', size=15, symbol="star"), | |
| ) | |
| ) | |
| fig.update_layout( | |
| xaxis=dict( | |
| range=[3000, 7000], | |
| nticks=6, | |
| showticklabels=True, | |
| ticks='outside', | |
| tickfont=dict(size=18,), | |
| title=dict(text="Risky reward", font=dict(size=18), standoff=10), | |
| showgrid=False, | |
| zeroline=False, | |
| hoverformat='.2f' | |
| ), | |
| yaxis=dict( | |
| range=[-1000, 4500], | |
| nticks=7, | |
| showticklabels=True, | |
| ticks='outside', | |
| tickfont=dict(size=18,), | |
| title=dict(text="Cautious reward", font=dict(size=18), standoff=10), | |
| showgrid=False, | |
| zeroline=False, | |
| hoverformat='.2f' | |
| ), | |
| font=dict(family="Roboto", size=12, color="Black"), | |
| hovermode='x unified', | |
| autosize=False, | |
| width=500, | |
| height=500, | |
| margin=dict(l=100, r=50, b=150, t=20, pad=0), | |
| paper_bgcolor="White", | |
| plot_bgcolor="White", | |
| shapes=shapes, | |
| legend=dict( | |
| x=0.5, | |
| y=0.03, | |
| traceorder="normal", | |
| font=dict(family="Roboto", size=12, color="black"), | |
| bgcolor="White", | |
| bordercolor="Black", | |
| borderwidth=1 | |
| ) | |
| ) | |
| return fig | |
| def run(): | |
| st.write( | |
| f""" | |
| <link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'> | |
| <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> | |
| <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML"> | |
| </script> | |
| <h3 style='text-align: left;';>Making humanoid run more naturally with diverse engineered rewards</h3>""",unsafe_allow_html=True) | |
| st.markdown( | |
| r""" | |
| Teaching humanoids to walk in a human-like manner serves as a benchmark to evaluate RL strategies for continuous control. One of the key challenges is shaping a suitable proxy reward, given the intricate coordination and balance involved in human locomotion. It is standard to consider the dense reward at each timestep: ${r(t)=velocity-\alpha \times \sum_t a^{2}_{t}}$, controlling the agent's velocity while penalizing wide actions. Yet, the penalty coefficient $\alpha$ is challenging to set. To tackle this, we devised two rewards in the Brax physics engine: a *risky* one with $\alpha=0$, and a *cautious* one $\alpha=1$. | |
| Below in the interactive animation, you will see the humanoids trained with these two rewards: the humanoid for $\alpha=0$ is the fastest but the most chaotic, while the one for $\alpha=1$ is more cautious but slower. For intermediate values of $\lambda$, the policy is obtained by linear interpolation of those extreme weights, arguably resulting in smoother motion patterns. | |
| """, unsafe_allow_html=True | |
| ) | |
| st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point!</h3>""",unsafe_allow_html=True) | |
| files = [] | |
| for i in range(21): | |
| filename = f'streamlit_app/data/locomotion/trajectories/{i}.html' | |
| files.append(codecs.open(filename, "r", "utf-8").read()) | |
| files = [x for i,x in enumerate(files) if i%2==0] | |
| row_0_1,row_0_2,row_0_3,row_0_4 = st.columns([3,1,1,1]) | |
| with row_0_1: | |
| with open("streamlit_app/data/locomotion/pareto/humanoid_averse_taker_with_morl.pkl","rb") as f: | |
| dict_results = pickle.load(f) | |
| fig = plot_pareto(dict_results) | |
| onclick = plotly_events(fig, click_event=True) | |
| with row_0_4: | |
| st.markdown(f"""<div style='text-align: left; color: {color1}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=1.0</div>""",unsafe_allow_html=True) | |
| components.html(files[-1],width=150,height=300) | |
| with row_0_3: | |
| if len(onclick) > 0: | |
| idx = onclick[-1]['pointIndex'] | |
| else: | |
| idx = 5 | |
| st.markdown( | |
| f"""<div style='text-align: left; color: {interpolate_color(color1, color2, round(1- idx/(len(files)-1),2))}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位={round(1-idx/(len(files)-1),2)}</div>""", | |
| unsafe_allow_html=True | |
| ) | |
| components.html(files[idx], width=150, height=300) | |
| with row_0_2: | |
| st.markdown(f"""<div style='text-align: left; color: {color2}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=0.0</div>""",unsafe_allow_html=True) | |
| components.html(files[0],width=150,height=300) | |
| if __name__ == "__main__": | |
| img = Image.open("streamlit_app/assets/images/icon.png") | |
| st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide") | |
| inject_custom_css("streamlit_app/assets/styles.css") | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| run() | |