alfulanny commited on
Commit
4514315
·
verified ·
1 Parent(s): d3d57c6

Update smolagents_agent.py

Browse files
Files changed (1) hide show
  1. smolagents_agent.py +28 -5
smolagents_agent.py CHANGED
@@ -548,18 +548,41 @@ class OptimizedSmolagentsGAIAgent:
548
  if not hf_token:
549
  print("HF_TOKEN not found. Please set it in environment variables")
550
  return None
 
551
  try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552
  from smolagents import InferenceClientModel
553
- model = InferenceClientModel(
554
- model_id="allenai/Olmo-3-32B-Think",
555
- token=hf_token
556
- )
557
- print("Using HuggingFace model")
558
  return model
 
559
  except Exception as e:
560
  print(f"Error initializing HuggingFace model: {e}")
561
  return None
562
 
 
563
  def classify_question(self, question: str) -> Dict[str, Any]:
564
  """Enhanced question classification with confidence scores"""
565
  q_lower = question.lower()
 
548
  if not hf_token:
549
  print("HF_TOKEN not found. Please set it in environment variables")
550
  return None
551
+
552
  try:
553
+ # Try multiple model options for better reliability and timeout handling
554
+ model_options = [
555
+ "allenai/Olmo-3-32B-Think",
556
+ "microsoft/DialoGPT-small",
557
+ "google/flan-t5-small",
558
+ "meta-llama/Llama-3.2-1B-Instruct"
559
+ ]
560
+
561
+ for model in model_options:
562
+ try:
563
+ from smolagents import InferenceClientModel
564
+ model = InferenceClientModel(
565
+ model_id=model,
566
+ token=hf_token,
567
+ timeout=60 # 60 second timeout
568
+ )
569
+ print(f"Using model: {model_id}")
570
+ return model
571
+ except Exception as model_error:
572
+ print(f"Failed to initialize {model_id}: {model_error}")
573
+ continue
574
+
575
+ # Fallback: basic model without specific model_id
576
  from smolagents import InferenceClientModel
577
+ model = InferenceClientModel(token=hf_token, timeout=30)
578
+ print("Using default HuggingFace model")
 
 
 
579
  return model
580
+
581
  except Exception as e:
582
  print(f"Error initializing HuggingFace model: {e}")
583
  return None
584
 
585
+
586
  def classify_question(self, question: str) -> Dict[str, Any]:
587
  """Enhanced question classification with confidence scores"""
588
  q_lower = question.lower()