Add model
Browse files- QuijoBERT/config.json +27 -0
- QuijoBERT/merges.txt +0 -0
- QuijoBERT/pytorch_model.bin +3 -0
- QuijoBERT/training_args.bin +3 -0
- QuijoBERT/vocab.json +0 -0
- app.py +39 -3
- el_quijote.txt +0 -0
- quijoBERT.py +113 -0
QuijoBERT/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./QuijoBERT/backup",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 6,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.19.0.dev0",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 50000
|
| 27 |
+
}
|
QuijoBERT/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
QuijoBERT/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65f7722ec4294cf9c4a092995573924d30d0a0a268b7e4db0c41a4ff2564b1c7
|
| 3 |
+
size 327904939
|
QuijoBERT/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c49120b72a0cb08b7a726d09864a5baba0e888193c56ff53895d356cc6cc501a
|
| 3 |
+
size 3119
|
QuijoBERT/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
CHANGED
|
@@ -1,7 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
iface.launch()
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
|
| 3 |
+
# def greet(name):
|
| 4 |
+
# return "Hello Mr." + name + "!!"
|
| 5 |
+
|
| 6 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
+
# iface.launch()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
+
from numpy import kaiser
|
| 12 |
+
|
| 13 |
+
from transformers import pipeline
|
| 14 |
+
|
| 15 |
+
fill_mask = pipeline("fill-mask", model="./QuijoBERT", tokenizer = './QuijoBERT')
|
| 16 |
+
|
| 17 |
+
def predict(text):
|
| 18 |
+
|
| 19 |
+
res_dict = {}
|
| 20 |
+
x = fill_mask(text)
|
| 21 |
+
print('x')
|
| 22 |
+
for i in range(len(x)):
|
| 23 |
+
k = x[i]['sequence']
|
| 24 |
+
e = x[i]['score']
|
| 25 |
+
print(k, e)
|
| 26 |
+
if e >= 0.05:
|
| 27 |
+
res_dict[k] = e
|
| 28 |
+
print (res_dict)
|
| 29 |
+
return res_dict
|
| 30 |
+
#return {x[0]["sequence"], x[0]["score"]}
|
| 31 |
+
|
| 32 |
+
# texto = 'en un lugar de la <mask>'
|
| 33 |
+
# print(predict(texto))
|
| 34 |
+
|
| 35 |
+
iface = gr.Interface(
|
| 36 |
+
fn=predict,
|
| 37 |
+
inputs='text',
|
| 38 |
+
outputs ='label',
|
| 39 |
+
examples=['En un lugar de la <mask>', 'En verdad, <mask> Sancho', 'Cómo has estado, bien mío, <mask> de mis ojos, compañero mío']
|
| 40 |
+
)
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
|
|
|
| 43 |
iface.launch()
|
el_quijote.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
quijoBERT.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, RobertaConfig , RobertaTokenizer,RobertaForMaskedLM, DataCollatorForLanguageModeling, LineByLineTextDataset, Trainer, TrainingArguments
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from tokenizers import ByteLevelBPETokenizer
|
| 8 |
+
from tokenizers.implementations import ByteLevelBPETokenizer
|
| 9 |
+
from tokenizers.processors import BertProcessing
|
| 10 |
+
import torch
|
| 11 |
+
from torchinfo import summary
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
paths = [str(x) for x in Path(".").glob("**/el_*.txt")]
|
| 17 |
+
print(paths)
|
| 18 |
+
# Initialize a tokenizer
|
| 19 |
+
tokenizer = ByteLevelBPETokenizer()
|
| 20 |
+
# Customize training
|
| 21 |
+
tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2,
|
| 22 |
+
special_tokens=[
|
| 23 |
+
"<s>",
|
| 24 |
+
"<pad>",
|
| 25 |
+
"</s>",
|
| 26 |
+
"<unk>",
|
| 27 |
+
"<mask>",
|
| 28 |
+
])
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
dir_path = os.getcwd()
|
| 32 |
+
token_dir = os.path.join(dir_path, 'QuijoBERT')
|
| 33 |
+
|
| 34 |
+
if not os.path.exists(token_dir):
|
| 35 |
+
os.makedirs(token_dir)
|
| 36 |
+
tokenizer.save_model('QuijoBERT')
|
| 37 |
+
|
| 38 |
+
tokenizer = ByteLevelBPETokenizer(
|
| 39 |
+
"./QuijoBERT/vocab.json",
|
| 40 |
+
"./QuijoBERT/merges.txt",
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
tokenizer._tokenizer.post_processor = BertProcessing(
|
| 44 |
+
("</s>", tokenizer.token_to_id("</s>")),
|
| 45 |
+
("<s>", tokenizer.token_to_id("<s>")),
|
| 46 |
+
)
|
| 47 |
+
tokenizer.enable_truncation(max_length=512)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
config = RobertaConfig(
|
| 52 |
+
vocab_size=52_000,
|
| 53 |
+
max_position_embeddings=514,
|
| 54 |
+
num_attention_heads=12,
|
| 55 |
+
num_hidden_layers=6,
|
| 56 |
+
type_vocab_size=1,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
"""# Step 8: Re-creating the Tokenizer in Transformers"""
|
| 60 |
+
|
| 61 |
+
tokenizer = RobertaTokenizer.from_pretrained("./QuijoBERT", max_length=512)
|
| 62 |
+
|
| 63 |
+
#Initializing a Model
|
| 64 |
+
|
| 65 |
+
model = RobertaForMaskedLM(config=config)
|
| 66 |
+
#In case we want to recover the after a crash
|
| 67 |
+
#model = RobertaForMaskedLM.from_pretrained("./QuijoBERT/Checkpoint-xxxxx")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
#Tensorflow
|
| 71 |
+
print(model)
|
| 72 |
+
#Pytorch
|
| 73 |
+
summary(model)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
dataset = LineByLineTextDataset(
|
| 77 |
+
tokenizer=tokenizer,
|
| 78 |
+
file_path="./el_quijote.txt",
|
| 79 |
+
block_size=128,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
#Defining a Data Collator
|
| 84 |
+
|
| 85 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 86 |
+
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Initializing the Trainer Object
|
| 90 |
+
training_args = TrainingArguments(
|
| 91 |
+
output_dir="./QuijoBERT",
|
| 92 |
+
overwrite_output_dir=True,
|
| 93 |
+
num_train_epochs=1,
|
| 94 |
+
per_device_train_batch_size=64,
|
| 95 |
+
save_steps=1000,
|
| 96 |
+
save_total_limit=2,
|
| 97 |
+
)
|
| 98 |
+
trainer = Trainer(
|
| 99 |
+
model=model,
|
| 100 |
+
args=training_args,
|
| 101 |
+
data_collator=data_collator,
|
| 102 |
+
train_dataset=dataset,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
#Training the Model
|
| 107 |
+
print('aqui')
|
| 108 |
+
trainer.train()
|
| 109 |
+
trainer.save_model("./QuijoBERT")
|
| 110 |
+
|
| 111 |
+
#Saving the Final Model(+tokenizer + config) to disk
|
| 112 |
+
trainer.save_model("./QuijoBERT")
|
| 113 |
+
|