Spaces:
Running
Running
Commit
·
cd6c769
1
Parent(s):
a758727
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,14 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
from io import BytesIO
|
| 5 |
# from IPython.display import display
|
| 6 |
import base64
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# helper decoder
|
| 9 |
def decode_base64_image(image_string):
|
|
@@ -19,66 +24,162 @@ def display_image(image=None,width=500,height=500):
|
|
| 19 |
# API Gateway endpoint URL
|
| 20 |
api_url = 'https://a02q342s5b.execute-api.us-east-2.amazonaws.com/reinvent-demo-inf2-sm-20231114'
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
# ===========
|
| 24 |
-
# Define Streamlit UI elements
|
| 25 |
-
st.title('Stable Diffusion XL with Refiner Image Generation')
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
seed = st.number_input("Random seed", value=555, placeholder="Type a number...", help="set to same value to generate same image, if other inputs are the same, change to generate a different image for same inputs")
|
| 36 |
-
# seed = 555
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
min_value=1,
|
| 40 |
max_value=100,
|
| 41 |
-
value=
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
denoising_start = st.slider("Denoising Start",
|
| 45 |
-
min_value=0.0,
|
| 46 |
-
max_value=1.0,
|
| 47 |
-
value=0.8,
|
| 48 |
-
help="when to stop modifying the overall image and start refining the details")
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
if st.button('Generate Image'):
|
| 53 |
-
with st.spinner(f'Generating Image with {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}...'):
|
| 54 |
-
# ===============
|
| 55 |
-
# Example input data
|
| 56 |
-
prompt_input = {
|
| 57 |
-
"prompt": prompt,
|
| 58 |
-
"parameters": {
|
| 59 |
-
"num_inference_steps": num_inference_steps,
|
| 60 |
-
"seed": seed,
|
| 61 |
-
"negative_prompt": negative_prompt
|
| 62 |
-
# "denoising_start": denoising_start
|
| 63 |
-
}
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
# Make API request
|
| 67 |
-
response = requests.post(api_url, json=prompt_input)
|
| 68 |
-
|
| 69 |
-
# Process and display the response
|
| 70 |
-
if response.status_code == 200:
|
| 71 |
-
result = response.json()
|
| 72 |
-
# st.success(f"Prediction result: {result}")
|
| 73 |
-
image = display_image(decode_base64_image(result["generated_images"][0]))
|
| 74 |
-
st.header("SDXL Base + Refiner")
|
| 75 |
-
st.image(image,
|
| 76 |
-
caption=f"SDXL Base + Refiner, {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}")
|
| 77 |
-
else:
|
| 78 |
-
st.error(f"Error: {response.text}")
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
# Set the page layout to 'wide'
|
| 3 |
+
st.set_page_config(layout="wide")
|
| 4 |
import requests
|
| 5 |
from PIL import Image
|
| 6 |
from io import BytesIO
|
| 7 |
# from IPython.display import display
|
| 8 |
import base64
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
|
| 12 |
|
| 13 |
# helper decoder
|
| 14 |
def decode_base64_image(image_string):
|
|
|
|
| 24 |
# API Gateway endpoint URL
|
| 25 |
api_url = 'https://a02q342s5b.execute-api.us-east-2.amazonaws.com/reinvent-demo-inf2-sm-20231114'
|
| 26 |
|
| 27 |
+
# Define the CSS to change the text input background color
|
| 28 |
+
input_field_style = """
|
| 29 |
+
<style>
|
| 30 |
+
/* Customize the text input field background and text color */
|
| 31 |
+
.stTextInput input {
|
| 32 |
+
background-color: #fbd8bf; /* 'Rind' color */
|
| 33 |
+
color: #232F3E; /* Dark text color */
|
| 34 |
+
}
|
| 35 |
+
/* You might also want to change the color for textarea if you're using it */
|
| 36 |
+
.stTextArea textarea {
|
| 37 |
+
background-color: #fbd8bf; /* 'Rind' color */
|
| 38 |
+
color: #232F3E; /* Dark text color */
|
| 39 |
+
}
|
| 40 |
+
</style>
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
# Inject custom styles into the Streamlit app
|
| 44 |
+
st.markdown(input_field_style, unsafe_allow_html=True)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Creating Tabs
|
| 48 |
+
tab1, tab2 = st.tabs(["Image Generation", "Text Generation"])
|
| 49 |
+
|
| 50 |
+
with tab1:
|
| 51 |
+
# Create two columns for layout
|
| 52 |
+
left_column, right_column = st.columns(2)
|
| 53 |
+
# ===========
|
| 54 |
+
with left_column:
|
| 55 |
+
# Define Streamlit UI elements
|
| 56 |
+
st.title('Stable Diffusion XL Image Generation with AWS Inferentia')
|
| 57 |
+
|
| 58 |
+
prompt_one = st.text_area("Enter your prompt:",
|
| 59 |
+
f"Raccoon astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
|
| 60 |
+
|
| 61 |
+
# Number of inference steps
|
| 62 |
+
num_inference_steps_one = st.slider("Number of Inference Steps",
|
| 63 |
+
min_value=1,
|
| 64 |
+
max_value=100,
|
| 65 |
+
value=30,
|
| 66 |
+
help="More steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.")
|
| 67 |
+
|
| 68 |
+
# Create an expandable section for optional parameters
|
| 69 |
+
with st.expander("Optional Parameters"):
|
| 70 |
+
# Random seed input
|
| 71 |
+
seed_one = st.number_input("Random seed",
|
| 72 |
+
value=555,
|
| 73 |
+
help="Set to the same value to generate the same image if other inputs are the same, change to generate a different image for same inputs.")
|
| 74 |
+
|
| 75 |
+
# Negative prompt input
|
| 76 |
+
negative_prompt_one = st.text_area("Enter your negative prompt:",
|
| 77 |
+
"cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
+
if st.button('Generate Image'):
|
| 86 |
+
with st.spinner(f'Generating Image with {num_inference_steps_one} iterations'):
|
| 87 |
+
with right_column:
|
| 88 |
+
start_time = time.time()
|
| 89 |
+
# ===============
|
| 90 |
+
# Example input data
|
| 91 |
+
prompt_input_one = {
|
| 92 |
+
"prompt": prompt_one,
|
| 93 |
+
"parameters": {
|
| 94 |
+
"num_inference_steps": num_inference_steps_one,
|
| 95 |
+
"seed": seed_one,
|
| 96 |
+
"negative_prompt": negative_prompt_one
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
|
| 100 |
+
# Make API request
|
| 101 |
+
response_one = requests.post(api_url, json=prompt_input_one)
|
| 102 |
|
| 103 |
+
# Process and display the response
|
| 104 |
+
if response_one.status_code == 200:
|
| 105 |
+
result_one = response_one.json()
|
| 106 |
+
# st.success(f"Prediction result: {result}")
|
| 107 |
+
image_one = display_image(decode_base64_image(result_one["generated_images"][0]))
|
| 108 |
+
st.image(image_one,
|
| 109 |
+
caption=f"{prompt_one}")
|
| 110 |
+
end_time = time.time()
|
| 111 |
+
total_time = round(end_time - start_time, 2)
|
| 112 |
+
st.text(f"Prompt: {prompt_one}")
|
| 113 |
+
st.text(f"Number of Iterations: {num_inference_steps_one}")
|
| 114 |
+
st.text(f"Random Seed: {seed_one}")
|
| 115 |
+
st.text(f'Total time taken: {total_time} seconds')
|
| 116 |
+
# Calculate and display the time per iteration in milliseconds
|
| 117 |
+
time_per_iteration_ms = (total_time / num_inference_steps_one)
|
| 118 |
+
st.text(f'Time per iteration: {time_per_iteration_ms:.2f} seconds')
|
| 119 |
+
else:
|
| 120 |
+
st.error(f"Error: {response_one.text}")
|
| 121 |
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
with tab2:
|
| 124 |
+
# ===========
|
| 125 |
+
# Define Streamlit UI elements
|
| 126 |
+
st.title('Stable Diffusion XL Image Generation')
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
prompt = st.text_area("Enter your prompt:",
|
| 131 |
+
"Raccoons astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
|
| 132 |
+
|
| 133 |
+
# Number of inference steps
|
| 134 |
+
num_inference_steps = st.slider("Number of Inference Steps",
|
| 135 |
min_value=1,
|
| 136 |
max_value=100,
|
| 137 |
+
value=40,
|
| 138 |
+
help="More steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
# Create an expandable section for optional parameters
|
| 141 |
+
with st.expander("Optional Parameters"):
|
| 142 |
+
# Random seed input
|
| 143 |
+
seed = st.number_input("Random seed",
|
| 144 |
+
value=42,
|
| 145 |
+
help="Set to the same value to generate the same image if other inputs are the same, change to generate a different image for same inputs.")
|
| 146 |
|
| 147 |
+
# Negative prompt input
|
| 148 |
+
negative_prompt = st.text_area("Enter your negative prompt:",
|
| 149 |
+
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
if st.button('Generate Image:'):
|
| 158 |
+
with st.spinner(f'Generating Image with {num_inference_steps} iterations'):
|
| 159 |
+
# ===============
|
| 160 |
+
# Example input data
|
| 161 |
+
prompt_input = {
|
| 162 |
+
"prompt": prompt,
|
| 163 |
+
"parameters": {
|
| 164 |
+
"num_inference_steps": num_inference_steps,
|
| 165 |
+
"seed": seed,
|
| 166 |
+
"negative_prompt": negative_prompt
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
# Make API request
|
| 171 |
+
response = requests.post(api_url, json=prompt_input)
|
| 172 |
+
|
| 173 |
+
# Process and display the response
|
| 174 |
+
if response.status_code == 200:
|
| 175 |
+
result = response.json()
|
| 176 |
+
# st.success(f"Prediction result: {result}")
|
| 177 |
+
image2 = display_image(decode_base64_image(result["generated_images"][0]))
|
| 178 |
+
st.header("SDXL Base")
|
| 179 |
+
st.image(image2,
|
| 180 |
+
caption=f"SDXL Base, {num_inference_steps} iterations")
|
| 181 |
+
else:
|
| 182 |
+
st.error(f"Error: {response.text}")
|
| 183 |
|
| 184 |
|
| 185 |
+
|