Spaces:
Sleeping
Sleeping
fix with endpoints 2
Browse files
app.py
CHANGED
|
@@ -14,11 +14,10 @@ import gc
|
|
| 14 |
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
| 17 |
-
# Environment setup
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
| 20 |
|
| 21 |
-
#
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN)
|
| 23 |
video_model = models.video.r3d_18(weights="KINETICS400_V1")
|
| 24 |
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
|
|
@@ -28,20 +27,29 @@ projector = ImageToTextProjector(512, report_generator.config.d_model)
|
|
| 28 |
|
| 29 |
num_classes = 4
|
| 30 |
class_names = ["acute", "normal", "chronic", "lacunar"]
|
| 31 |
-
combined_model = CombinedModel(
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
model_file = hf_hub_download(
|
|
|
|
|
|
|
| 34 |
state_dict = torch.load(model_file, map_location=device)
|
| 35 |
combined_model.load_state_dict(state_dict)
|
| 36 |
combined_model.to(device)
|
| 37 |
combined_model.eval()
|
| 38 |
|
| 39 |
# Image transforms
|
| 40 |
-
image_transform = transforms.Compose(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def dicom_to_image(file_bytes):
|
| 47 |
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes))
|
|
@@ -50,19 +58,20 @@ def dicom_to_image(file_bytes):
|
|
| 50 |
pixel_array = pixel_array.astype(np.uint8)
|
| 51 |
return Image.fromarray(pixel_array).convert("RGB")
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
return "No image uploaded.", ""
|
| 56 |
|
| 57 |
processed_imgs = []
|
| 58 |
-
for
|
| 59 |
-
filename =
|
| 60 |
if filename.endswith((".dcm", ".ima")):
|
| 61 |
-
file_bytes =
|
| 62 |
dicom_img = dicom_to_image(file_bytes)
|
| 63 |
processed_imgs.append(dicom_img)
|
| 64 |
else:
|
| 65 |
-
pil_img = Image.open(
|
| 66 |
processed_imgs.append(pil_img)
|
| 67 |
|
| 68 |
n_frames = 16
|
|
@@ -72,7 +81,9 @@ def predict(images):
|
|
| 72 |
for i in np.linspace(0, len(processed_imgs) - 1, n_frames, dtype=int)
|
| 73 |
]
|
| 74 |
else:
|
| 75 |
-
images_sampled = processed_imgs + [processed_imgs[-1]] * (
|
|
|
|
|
|
|
| 76 |
|
| 77 |
tensor_imgs = [image_transform(i) for i in images_sampled]
|
| 78 |
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device)
|
|
@@ -88,21 +99,19 @@ def predict(images):
|
|
| 88 |
|
| 89 |
return class_name, report[0] if report else "No report generated."
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
file_count="multiple",
|
|
|
|
| 97 |
label="Upload CT Scan Images",
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
description="Upload CT scan DICOM or image files. Returns diagnosis classification and generated report.",
|
| 105 |
-
)
|
| 106 |
|
| 107 |
-
# Launch with explicit api_name for REST API compatibility
|
| 108 |
demo.launch()
|
|
|
|
| 14 |
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
|
|
|
| 17 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
| 19 |
|
| 20 |
+
# Load tokenizer and models
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN)
|
| 22 |
video_model = models.video.r3d_18(weights="KINETICS400_V1")
|
| 23 |
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
|
|
|
|
| 27 |
|
| 28 |
num_classes = 4
|
| 29 |
class_names = ["acute", "normal", "chronic", "lacunar"]
|
| 30 |
+
combined_model = CombinedModel(
|
| 31 |
+
video_model, report_generator, num_classes, projector, tokenizer
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
model_file = hf_hub_download(
|
| 35 |
+
"baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN
|
| 36 |
+
)
|
| 37 |
state_dict = torch.load(model_file, map_location=device)
|
| 38 |
combined_model.load_state_dict(state_dict)
|
| 39 |
combined_model.to(device)
|
| 40 |
combined_model.eval()
|
| 41 |
|
| 42 |
# Image transforms
|
| 43 |
+
image_transform = transforms.Compose(
|
| 44 |
+
[
|
| 45 |
+
transforms.Resize((112, 112)),
|
| 46 |
+
transforms.ToTensor(),
|
| 47 |
+
transforms.Normalize(
|
| 48 |
+
mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]
|
| 49 |
+
),
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
|
| 54 |
def dicom_to_image(file_bytes):
|
| 55 |
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes))
|
|
|
|
| 58 |
pixel_array = pixel_array.astype(np.uint8)
|
| 59 |
return Image.fromarray(pixel_array).convert("RGB")
|
| 60 |
|
| 61 |
+
|
| 62 |
+
def predict(files):
|
| 63 |
+
if not files:
|
| 64 |
return "No image uploaded.", ""
|
| 65 |
|
| 66 |
processed_imgs = []
|
| 67 |
+
for file in files:
|
| 68 |
+
filename = file.name.lower()
|
| 69 |
if filename.endswith((".dcm", ".ima")):
|
| 70 |
+
file_bytes = file.read()
|
| 71 |
dicom_img = dicom_to_image(file_bytes)
|
| 72 |
processed_imgs.append(dicom_img)
|
| 73 |
else:
|
| 74 |
+
pil_img = Image.open(file).convert("RGB")
|
| 75 |
processed_imgs.append(pil_img)
|
| 76 |
|
| 77 |
n_frames = 16
|
|
|
|
| 81 |
for i in np.linspace(0, len(processed_imgs) - 1, n_frames, dtype=int)
|
| 82 |
]
|
| 83 |
else:
|
| 84 |
+
images_sampled = processed_imgs + [processed_imgs[-1]] * (
|
| 85 |
+
n_frames - len(processed_imgs)
|
| 86 |
+
)
|
| 87 |
|
| 88 |
tensor_imgs = [image_transform(i) for i in images_sampled]
|
| 89 |
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device)
|
|
|
|
| 99 |
|
| 100 |
return class_name, report[0] if report else "No report generated."
|
| 101 |
|
| 102 |
+
|
| 103 |
+
# Gradio Blocks setup (explicitly)
|
| 104 |
+
with gr.Blocks() as demo:
|
| 105 |
+
gr.Markdown("## 🩺 Phronesis Medical Report Generator")
|
| 106 |
+
file_input = gr.File(
|
| 107 |
file_count="multiple",
|
| 108 |
+
file_types=[".dcm", ".jpg", ".jpeg", ".png"],
|
| 109 |
label="Upload CT Scan Images",
|
| 110 |
+
)
|
| 111 |
+
btn = gr.Button("Generate Report")
|
| 112 |
+
class_output = gr.Textbox(label="Predicted Class")
|
| 113 |
+
report_output = gr.Textbox(label="Generated Report")
|
| 114 |
+
|
| 115 |
+
btn.click(fn=predict, inputs=file_input, outputs=[class_output, report_output])
|
|
|
|
|
|
|
| 116 |
|
|
|
|
| 117 |
demo.launch()
|