Spaces:
Sleeping
Sleeping
File size: 18,091 Bytes
d4d1ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import sys
import os
from pathlib import Path
import pandas as pd
import numpy as np
from typing import Optional
# sklearn imports
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification_report
import joblib
# Optional HF weak-labeling
HF_TOKEN = os.environ.get('HF_TOKEN')
# optional boosters
try:
import xgboost as xgb
_has_xgb = True
except Exception:
_has_xgb = False
def parse_and_features(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
# parse datetimes
for c in ['OutageDateTime','FirstRestoDateTime','LastRestoDateTime']:
if c in df.columns:
df[c+'_dt'] = pd.to_datetime(df[c], format='%d-%m-%Y %H:%M:%S', errors='coerce')
# duration
if 'OutageDateTime_dt' in df.columns and 'LastRestoDateTime_dt' in df.columns:
df['duration_min'] = (df['LastRestoDateTime_dt'] - df['OutageDateTime_dt']).dt.total_seconds() / 60.0
else:
df['duration_min'] = np.nan
# numeric columns
for col in ['Load(MW)','Capacity(kVA)','FirstStepDuration','LastStepDuration','AffectedCustomer']:
if col in df.columns:
df[col+'_num'] = pd.to_numeric(df[col], errors='coerce')
else:
df[col+'_num'] = np.nan
# time features
if 'OutageDateTime_dt' in df.columns:
df['hour'] = df['OutageDateTime_dt'].dt.hour
df['weekday'] = df['OutageDateTime_dt'].dt.weekday
else:
df['hour'] = np.nan
df['weekday'] = np.nan
# device frequency
if 'OpDeviceType' in df.columns:
freq = df['OpDeviceType'].fillna('NA').value_counts()
df['device_freq'] = df['OpDeviceType'].map(lambda x: freq.get(x,0))
else:
df['device_freq'] = 0
# small cleanup for categorical
for c in ['OpDeviceType','Owner','Weather','EventType']:
if c in df.columns:
df[c] = df[c].fillna('NA')
else:
df[c] = 'NA'
return df
def weak_label_with_hf(text: str) -> Optional[str]:
# Use HF router via OpenAI-compatible client to map free-text to a label suggestions
if not HF_TOKEN or not isinstance(text, str) or not text.strip():
return None
try:
from openai import OpenAI
client = OpenAI(base_url='/static-proxy?url=https%3A%2F%2Frouter.huggingface.co%2Fv1%26%23x27%3B%3C%2Fspan%3E%2C api_key=HF_TOKEN)
prompt = f"ให้จัดหมวดสาเหตุของเหตุการณ์ไฟฟ้า ในคำสั้นๆ (ไทย) จากข้อความนี้:\n\n{text}\n\nตอบเป็นคำเดียวหรือวลีสั้นๆ เช่น 'สายขาด' หรือ 'บำรุงรักษา'"
completion = client.chat.completions.create(
model='meta-llama/Llama-4-Scout-17B-16E-Instruct:novita',
messages=[{"role":"user","content":[{"type":"text","text":prompt}]}],
max_tokens=40,
)
choice = completion.choices[0]
msg = getattr(choice, 'message', None) or (choice.get('message') if isinstance(choice, dict) else None)
content = None
if msg:
content = msg.get('content') if isinstance(msg, dict) else getattr(msg, 'content', None)
if isinstance(content, list) and content:
# find text
for it in content:
if isinstance(it, dict) and it.get('type') in ('output_text','text'):
return it.get('text').strip()
return str(content[0]).strip()
# fallback
text_out = choice.get('text') if isinstance(choice, dict) else None
return text_out.strip() if text_out else None
except Exception:
return None
def train_classifier(df: pd.DataFrame, label_col: str = 'CauseType', test_size: float = 0.2, random_state: int = 42, min_count_to_keep: int = 2, model_type: str = 'rf', hyperparams: dict = {}):
df = parse_and_features(df)
# optionally weak-label rows missing label
if label_col not in df.columns:
df[label_col] = None
if df[label_col].isna().sum() > 0 and HF_TOKEN:
# attempt weak labeling for missing entries using Detail or FaultDetail
for idx, row in df[df[label_col].isna()].iterrows():
text = None
for f in ['Detail','FaultDetail','SiteDetail']:
if f in df.columns and pd.notna(row.get(f)):
text = row.get(f)
break
if text:
try:
lbl = weak_label_with_hf(text)
if lbl:
df.at[idx, label_col] = lbl
except Exception:
pass
# filter rare classes and drop na
if df[label_col].notna().any():
vc = df[label_col].value_counts()
rare = vc[vc < min_count_to_keep].index
if len(rare) > 0:
df[label_col] = df[label_col].apply(lambda x: 'Other' if x in rare else x)
df = df.dropna(subset=[label_col])
# features
feature_cols = ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq','OpDeviceType','Owner','Weather','EventType']
X = df[feature_cols]
y = df[label_col].astype(str)
le = LabelEncoder()
y_encoded = le.fit_transform(y)
# split
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=test_size, random_state=random_state, stratify=y_encoded)
# model
if model_type == 'rf':
clf = RandomForestClassifier(random_state=random_state, **hyperparams)
elif model_type == 'gb':
clf = GradientBoostingClassifier(random_state=random_state, **hyperparams)
elif model_type == 'mlp':
clf = MLPClassifier(random_state=random_state, **hyperparams)
else:
raise ValueError(f"Unknown model_type: {model_type}")
# preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', Pipeline([('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq']),
('cat', Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]), ['OpDeviceType','Owner','Weather','EventType'])
]
)
pipeline = Pipeline([('preprocessor', preprocessor), ('classifier', clf)])
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
y_test_inv = le.inverse_transform(y_test)
y_pred_inv = le.inverse_transform(y_pred)
report = classification_report(y_test_inv, y_pred_inv, zero_division=0)
# save model
model_file = Path('outputs') / f'classifier_{model_type}_{label_col}.joblib'
# predictions on train set for download
y_pred_train = pipeline.predict(X)
pred_df = df.copy()
pred_df[f'Predicted_{label_col}'] = le.inverse_transform(y_pred_train)
preds_file = Path('outputs') / f'predictions_{model_type}_{label_col}.csv'
pred_df.to_csv(preds_file, index=False)
return {
'report': report,
'model_file': str(model_file),
'predictions_file': str(preds_file)
}
df = parse_and_features(df)
is_multi = len(label_cols) > 1
# optionally weak-label rows missing label (only for single target)
if not is_multi and label_cols[0] not in df.columns:
df[label_cols[0]] = None
if not is_multi and df[label_cols[0]].isna().sum() > 0 and HF_TOKEN:
# attempt weak labeling for missing entries using Detail or FaultDetail
for idx, row in df[df[label_cols[0]].isna()].iterrows():
text = None
for f in ['Detail','FaultDetail','SiteDetail']:
if f in df.columns and pd.notna(row.get(f)):
text = row.get(f)
break
if text:
try:
lbl = weak_label_with_hf(text)
if lbl:
df.at[idx, label_cols[0]] = lbl
except Exception:
pass
# filter rare classes and drop na (for each label_col)
for col in label_cols:
if col not in df.columns:
df[col] = None
if df[col].notna().any():
vc = df[col].value_counts()
rare = vc[vc < min_count_to_keep].index
if len(rare) > 0:
df[col] = df[col].apply(lambda x: 'Other' if x in rare else x)
df = df.dropna(subset=[col])
# features
feature_cols = ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq','OpDeviceType','Owner','Weather','EventType']
X = df[feature_cols]
# target
if is_multi:
y = df[label_cols]
# encode each target
les = [LabelEncoder() for _ in label_cols]
y_encoded = np.column_stack([le.fit_transform(y[col]) for le, col in zip(les, label_cols)])
else:
y = df[label_cols[0]].astype(str)
le = LabelEncoder()
y_encoded = le.fit_transform(y)
les = [le]
# split
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=test_size, random_state=random_state, stratify=y_encoded if not is_multi else None)
# model
if model_type == 'rf':
clf = RandomForestClassifier(random_state=random_state)
elif model_type == 'gb':
clf = GradientBoostingClassifier(random_state=random_state)
elif model_type == 'mlp':
clf = MLPClassifier(random_state=random_state, max_iter=500)
else:
raise ValueError(f"Unknown model_type: {model_type}")
# preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', Pipeline([('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq']),
('cat', Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]), ['OpDeviceType','Owner','Weather','EventType'])
]
)
pipeline = Pipeline([('preprocessor', preprocessor), ('classifier', clf)])
if do_gridsearch:
param_grid = {
'classifier__n_estimators': [50, 100, 200] if hasattr(clf, 'n_estimators') else [1],
'classifier__max_depth': [None, 10, 20] if hasattr(clf, 'max_depth') else [1],
}
cv = 3 if not is_multi else KFold(n_splits=3, shuffle=True, random_state=random_state)
scoring = 'accuracy' if not is_multi else None
grid = GridSearchCV(pipeline, param_grid, cv=cv, scoring=scoring, n_jobs=-1)
grid.fit(X_train, y_train)
pipeline = grid.best_estimator_
pipeline.fit(X_train, y_train)
# predict
y_pred = pipeline.predict(X_test)
# report
if is_multi:
reports = []
for i, col in enumerate(label_cols):
y_test_i = y_test[:, i]
y_pred_i = y_pred[:, i]
y_test_inv = les[i].inverse_transform(y_test_i)
y_pred_inv = les[i].inverse_transform(y_pred_i.astype(int))
rep = classification_report(y_test_inv, y_pred_inv, zero_division=0)
reports.append(f"Report for {col}:\n{rep}")
report = '\n\n'.join(reports)
else:
y_test_inv = les[0].inverse_transform(y_test)
y_pred_inv = les[0].inverse_transform(y_pred)
report = classification_report(y_test_inv, y_pred_inv, zero_division=0)
# save model
model_file = Path('outputs') / f'classifier_{model_type}_{"_".join(label_cols)}.joblib'
model_file.parent.mkdir(exist_ok=True)
joblib.dump({'pipeline': pipeline, 'label_encoders': les}, model_file)
# predictions on train set for download
y_pred_train = pipeline.predict(X)
if is_multi:
pred_df = df.copy()
for i, col in enumerate(label_cols):
pred_df[f'Predicted_{col}'] = les[i].inverse_transform(y_pred_train[:, i].astype(int))
else:
pred_df = df.copy()
pred_df[f'Predicted_{label_cols[0]}'] = les[0].inverse_transform(y_pred_train)
preds_file = Path('outputs') / f'predictions_{model_type}_{"_".join(label_cols)}.csv'
pred_df.to_csv(preds_file, index=False)
return {
'report': report,
'model_file': str(model_file),
'predictions_file': str(preds_file)
}
df = parse_and_features(df)
# optionally weak-label rows missing label
if label_col not in df.columns:
df[label_col] = None
if df[label_col].isna().sum() > 0 and HF_TOKEN:
# attempt weak labeling for missing entries using Detail or FaultDetail
for idx, row in df[df[label_col].isna()].iterrows():
text = None
for f in ['Detail','FaultDetail','SiteDetail']:
if f in df.columns and pd.notna(row.get(f)):
text = row.get(f)
break
if text:
lbl = weak_label_with_hf(text)
if lbl:
df.at[idx, label_col] = lbl
# combine rare classes into 'Other' if needed
if df[label_col].notna().any():
vc = df[label_col].value_counts()
rare = vc[vc < min_count_to_keep].index.tolist()
if rare:
df[label_col] = df[label_col].apply(lambda x: 'Other' if x in rare else x)
df = df.dropna(subset=[label_col])
if df.empty:
raise ValueError('No labeled data available for training')
# define features
feature_cols = ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq','OpDeviceType','Owner','Weather','EventType']
X = df[feature_cols]
y = df[label_col].astype(str)
# encode labels to integers
le = LabelEncoder()
y_encoded = le.fit_transform(y)
# simple train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=test_size, random_state=random_state, stratify=y_encoded)
# preprocessing
numeric_feats = ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq']
cat_feats = ['OpDeviceType','Owner','Weather','EventType']
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])
# sklearn versions differ on parameter name for sparse output
try:
cat_transformer = OneHotEncoder(handle_unknown='ignore', sparse_output=False)
except TypeError:
cat_transformer = OneHotEncoder(handle_unknown='ignore', sparse=False)
preprocessor = ColumnTransformer(transformers=[
('num', numeric_transformer, numeric_feats),
('cat', cat_transformer, cat_feats)
], remainder='drop')
# choose classifier
model_type = (model_type or 'rf').lower()
if model_type == 'rf':
clf_est = RandomForestClassifier(class_weight='balanced', random_state=random_state)
clf_name = 'rf'
elif model_type == 'gb':
clf_est = GradientBoostingClassifier(random_state=random_state)
clf_name = 'gb'
elif model_type == 'mlp':
clf_est = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, random_state=random_state)
clf_name = 'mlp'
else:
raise ValueError(f'Unknown model_type: {model_type}')
clf = Pipeline(steps=[('pre', preprocessor), ('clf', clf_est)])
if do_gridsearch:
if clf_name == 'rf':
param_grid = {
'clf__n_estimators': [100,200],
'clf__max_depth': [None, 10, 20],
'clf__min_samples_split': [2,5]
}
elif clf_name == 'lgb':
param_grid = {
'clf__n_estimators': [100,200],
'clf__num_leaves': [31,63]
}
elif clf_name == 'gb':
param_grid = {
'clf__n_estimators': [100,200],
'clf__max_depth': [3,6]
}
elif clf_name == 'mlp':
param_grid = {
'clf__hidden_layer_sizes': [(50,),(100,)],
'clf__alpha': [0.0001, 0.001]
}
else:
param_grid = {}
cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=random_state)
gs = GridSearchCV(clf, param_grid, cv=cv, scoring='f1_weighted', n_jobs=1)
gs.fit(X_train, y_train)
best = gs.best_estimator_
best_params = gs.best_params_
model_to_save = best
else:
clf.fit(X_train, y_train)
best_params = None
model_to_save = clf
y_pred = model_to_save.predict(X_test)
unique_labels = np.unique(np.concatenate([y_test, y_pred]))
target_names = [le.classes_[i] for i in unique_labels]
report = classification_report(y_test, y_pred, target_names=target_names, zero_division=0)
cm = confusion_matrix(y_test, y_pred)
# save model pipeline
out_dir = Path.cwd() / 'outputs'
out_dir.mkdir(exist_ok=True)
model_file = out_dir / f'{clf_name}_cause_pipeline.joblib'
joblib.dump({'pipeline': model_to_save, 'label_encoder': le}, model_file)
# save predictions
pred_df = X_test.copy()
pred_df['y_true'] = le.inverse_transform(y_test)
pred_df['y_pred'] = le.inverse_transform(y_pred)
pred_df.to_csv(out_dir / 'predictions_cause.csv', index=False, encoding='utf-8-sig')
return {'model_file': str(model_file), 'report': report, 'confusion_matrix': cm, 'predictions_file': str(out_dir / 'predictions_cause.csv'), 'best_params': best_params}
|