Spaces:
Running
Running
multi.py
Browse files
multi.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Imports
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import wikipedia
|
| 4 |
+
import numpy as np
|
| 5 |
+
import faiss
|
| 6 |
+
from langdetect import detect
|
| 7 |
+
from gtts import gTTS
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
import tempfile, os
|
| 11 |
+
import torch
|
| 12 |
+
import speech_recognition as sr
|
| 13 |
+
from functools import lru_cache
|
| 14 |
+
from pydub import AudioSegment
|
| 15 |
+
|
| 16 |
+
# ===== Model Setup =====
|
| 17 |
+
models = {}
|
| 18 |
+
def load_models():
|
| 19 |
+
models['encoder'] = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
| 20 |
+
models['to_en'] = pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en')
|
| 21 |
+
for lang in ['fr', 'ar', 'zh', 'es']:
|
| 22 |
+
models[f'en_to_{lang}'] = pipeline('translation_en_to_' + lang, model=f'Helsinki-NLP/opus-mt-en-{lang}')
|
| 23 |
+
models['answer_gen'] = pipeline('text2text-generation', model='google/flan-t5-base', max_length=1024) # increased length
|
| 24 |
+
|
| 25 |
+
load_models()
|
| 26 |
+
|
| 27 |
+
# ===== Utility Functions =====
|
| 28 |
+
def detect_language(text):
|
| 29 |
+
try:
|
| 30 |
+
return detect(text)
|
| 31 |
+
except:
|
| 32 |
+
return 'en'
|
| 33 |
+
|
| 34 |
+
def translate(text, src, tgt):
|
| 35 |
+
if src == tgt:
|
| 36 |
+
return text
|
| 37 |
+
if src != 'en':
|
| 38 |
+
text = models['to_en'](text)[0]['translation_text']
|
| 39 |
+
if f'en_to_{tgt}' in models:
|
| 40 |
+
return models[f'en_to_{tgt}'](text)[0]['translation_text']
|
| 41 |
+
return text
|
| 42 |
+
|
| 43 |
+
def tts_play(text, lang):
|
| 44 |
+
tts = gTTS(text=text, lang=lang)
|
| 45 |
+
path = tempfile.mktemp(suffix=".mp3")
|
| 46 |
+
tts.save(path)
|
| 47 |
+
return path
|
| 48 |
+
|
| 49 |
+
def chunk_text(text, max_words=100): # increased chunk size
|
| 50 |
+
sentences = text.split('. ')
|
| 51 |
+
chunks, current_chunk, current_len = [], [], 0
|
| 52 |
+
for sent in sentences:
|
| 53 |
+
words = sent.split()
|
| 54 |
+
if current_len + len(words) > max_words:
|
| 55 |
+
chunks.append('. '.join(current_chunk))
|
| 56 |
+
current_chunk = [sent]
|
| 57 |
+
current_len = len(words)
|
| 58 |
+
else:
|
| 59 |
+
current_chunk.append(sent)
|
| 60 |
+
current_len += len(words)
|
| 61 |
+
if current_chunk:
|
| 62 |
+
chunks.append('. '.join(current_chunk))
|
| 63 |
+
return chunks
|
| 64 |
+
|
| 65 |
+
def build_faiss_index(chunks, model):
|
| 66 |
+
embeddings = model.encode(chunks, convert_to_numpy=True)
|
| 67 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 68 |
+
index.add(embeddings)
|
| 69 |
+
return index
|
| 70 |
+
|
| 71 |
+
@lru_cache(maxsize=20)
|
| 72 |
+
def prepare_faiss_for_topic(topic):
|
| 73 |
+
wikipedia.set_lang('en')
|
| 74 |
+
page = wikipedia.page(topic)
|
| 75 |
+
content = page.content[:5000] # increase content for better answers
|
| 76 |
+
chunks = chunk_text(content)
|
| 77 |
+
index = build_faiss_index(chunks, models['encoder'])
|
| 78 |
+
return chunks, index
|
| 79 |
+
|
| 80 |
+
def retrieve_context(question, index, chunks, model, top_k=5): # increased top_k
|
| 81 |
+
q_emb = model.encode([question], convert_to_numpy=True)
|
| 82 |
+
_, indices = index.search(q_emb, top_k)
|
| 83 |
+
return ' '.join([chunks[i] for i in indices[0]])
|
| 84 |
+
|
| 85 |
+
# ===== Main Inference Function =====
|
| 86 |
+
def qa_system(audio, text_question, topic, output_lang):
|
| 87 |
+
question = ""
|
| 88 |
+
if audio is not None:
|
| 89 |
+
try:
|
| 90 |
+
r = sr.Recognizer()
|
| 91 |
+
audio_wav_path = tempfile.mktemp(suffix=".wav")
|
| 92 |
+
sound = AudioSegment.from_file(audio)
|
| 93 |
+
sound.export(audio_wav_path, format="wav")
|
| 94 |
+
with sr.AudioFile(audio_wav_path) as source:
|
| 95 |
+
audio_data = r.record(source)
|
| 96 |
+
question = r.recognize_google(audio_data)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
return f"β Could not understand the audio: {e}", None, None
|
| 99 |
+
elif text_question:
|
| 100 |
+
question = text_question.strip()
|
| 101 |
+
else:
|
| 102 |
+
return "β Please provide a voice or text question.", None, None
|
| 103 |
+
|
| 104 |
+
input_lang = detect_language(question)
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
chunks, faiss_index = prepare_faiss_for_topic(topic)
|
| 108 |
+
except:
|
| 109 |
+
return "Error loading topic from Wikipedia", None, None
|
| 110 |
+
|
| 111 |
+
context = retrieve_context(question, faiss_index, chunks, models['encoder'], top_k=5)
|
| 112 |
+
question_en = translate(question, input_lang, 'en')
|
| 113 |
+
prompt = f"Answer based on the context:\nContext: {context}\nQuestion: {question_en}"
|
| 114 |
+
answer_en = models['answer_gen'](prompt)[0]['generated_text']
|
| 115 |
+
|
| 116 |
+
if output_lang == 'en':
|
| 117 |
+
answer = answer_en
|
| 118 |
+
elif output_lang == 'am':
|
| 119 |
+
answer = "Amharic translation not supported."
|
| 120 |
+
else:
|
| 121 |
+
answer = translate(answer_en, 'en', output_lang)
|
| 122 |
+
|
| 123 |
+
audio_path = tts_play(answer, output_lang)
|
| 124 |
+
return f"You asked: {question}\n\nAnswer: {answer}", audio_path, answer
|
| 125 |
+
|
| 126 |
+
# ===== Gradio UI =====
|
| 127 |
+
lang_options = ['en', 'am', 'fr', 'ar', 'es', 'zh']
|
| 128 |
+
|
| 129 |
+
demo = gr.Interface(
|
| 130 |
+
fn=qa_system,
|
| 131 |
+
inputs=[
|
| 132 |
+
gr.Audio(type="filepath", label="π€ Ask your Question by Voice (optional)"),
|
| 133 |
+
gr.Textbox(label="βοΈ Or type your Question here (optional)"),
|
| 134 |
+
gr.Textbox(value="Artificial intelligence", label="π Wikipedia Topic"),
|
| 135 |
+
gr.Dropdown(choices=lang_options, value='en', label="π Output Language")
|
| 136 |
+
],
|
| 137 |
+
outputs=[
|
| 138 |
+
gr.Textbox(label="π€ Answer Output"),
|
| 139 |
+
gr.Audio(label="π Answer Playback"),
|
| 140 |
+
gr.Textbox(label="π Translated Answer Text")
|
| 141 |
+
],
|
| 142 |
+
title="π Multilingual Voice/Text Q&A Assistant",
|
| 143 |
+
description="""
|
| 144 |
+
<h3 style='text-align: center; font-weight: bold; font-style: italic;'>π Welcome to the Multilingual Wikipedia Q&A Assistant</h3>
|
| 145 |
+
<p style='text-align: center;'>You can ask questions using voice or text in different languages, and get spoken and translated answers using AI + Wikipedia. π</p>
|
| 146 |
+
"""
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Launch the app
|
| 150 |
+
demo.launch()
|