Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,8 @@ import torch
|
|
| 5 |
|
| 6 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 7 |
|
| 8 |
-
# Initialize
|
| 9 |
app = Flask(__name__)
|
| 10 |
|
| 11 |
-
# Load model and tokenizer once
|
| 12 |
MODEL_NAME = "s-nlp/roberta-base-formality-ranker"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 14 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
@@ -40,10 +38,8 @@ def predict_formality():
|
|
| 40 |
|
| 41 |
return jsonify({
|
| 42 |
"text": text,
|
| 43 |
-
"formality_score": round(score, 3),
|
| 44 |
"formal_percent": formal_percent,
|
| 45 |
-
"informal_percent": informal_percent
|
| 46 |
-
"classification": classification
|
| 47 |
})
|
| 48 |
|
| 49 |
if __name__ == "__main__":
|
|
|
|
| 5 |
|
| 6 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 7 |
|
|
|
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
|
|
|
| 10 |
MODEL_NAME = "s-nlp/roberta-base-formality-ranker"
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
|
|
| 38 |
|
| 39 |
return jsonify({
|
| 40 |
"text": text,
|
|
|
|
| 41 |
"formal_percent": formal_percent,
|
| 42 |
+
"informal_percent": informal_percent
|
|
|
|
| 43 |
})
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|