File size: 999 Bytes
3d9e243
 
 
f86886b
 
 
 
3d9e243
fff3a21
 
ea92f6d
fff3a21
 
 
 
3d9e243
 
 
 
 
 
 
 
 
 
fff3a21
 
 
 
 
 
 
 
3d9e243
 
fff3a21
 
207903e
fff3a21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
import os


os.environ["HF_HOME"] = "/tmp" 

spam = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")

toxic = pipeline("text-classification", model="s-nlp/roberta_toxicity_classifier")

sentiment = pipeline("text-classification", model = "nlptown/bert-base-multilingual-uncased-sentiment")



app = FastAPI()

@app.get("/")
def root():
    return {"status": "ok"}

class Query(BaseModel):
    text: str

@app.post("/spam")
def predict_spam(query: Query):
    result = spam(query.text)[0]
    return {"label": result["label"], "score": result["score"]}

@app.post("/toxic")
def predict_toxic(query: Query):
    result = toxic(query.text)[0]
    return {"label": result["label"], "score": result["score"]}

@app.post("/sentiment")
def predict_sentiment(query: Query):
    result = sentiment(query.text)[0]
    return {"label": result["label"], "score": result["score"]}