Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| import statsmodels.api as sm | |
| from sklearn.preprocessing import StandardScaler | |
| import gradio as gr | |
| import pickle | |
| with open ("scaled_obj.pkl", "rb") as f: | |
| sc_object = pickle.load(f) | |
| with open ("scaled_model.pkl", "rb") as f: | |
| lin_model_object = pickle.load(f) | |
| def fn_predict(Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees): | |
| df = np.array([[Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees]]) | |
| scaled_new_data = sc_object.transform(df) | |
| predictions = lin_model_object.predict(scaled_new_data) | |
| return predictions | |
| # Define Gradio interface | |
| iface = gr.Interface( | |
| fn=fn_predict, | |
| inputs=[ | |
| gr.Number(label="Total Revenue"), | |
| gr.Number(label="Operating Cost"), | |
| gr.Number(label="Total Assets"), | |
| gr.Number(label="Total Liabilities"), | |
| gr.Number(label="Stock Price"), | |
| gr.Number(label="Market Cap"), | |
| gr.Number(label="EBITDA"), | |
| gr.Number(label="R&D Expenses"), | |
| gr.Number(label="Number of Employees") | |
| ], | |
| outputs=gr.Textbox(), | |
| css="styles.css" | |
| ) | |
| # Launch the application | |
| iface.launch() | |