Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| # Load model and tokenizer | |
| MODEL_PATH = "./hate_speech_distilbert" # Update with actual path | |
| model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) | |
| # Label Mapping | |
| LABELS = { | |
| 0: "Hate Speech", | |
| 1: "Offensive Language", | |
| 2: "NOT Hate Speech" | |
| } | |
| app = FastAPI() | |
| class TextRequest(BaseModel): | |
| text: str | |
| def greet_json(): | |
| return {"Hello": "World!"} | |
| async def predict(request: TextRequest): | |
| inputs = tokenizer(request.text, return_tensors="pt", truncation=True, padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| prediction = torch.argmax(outputs.logits, dim=1).item() | |
| return {"prediction": LABELS[prediction]} | |
| # Example Usage | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |