Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from tensorflow_examples.models.pix2pix import pix2pix
|
| 6 |
+
|
| 7 |
+
OUTPUT_CHANNELS = 3
|
| 8 |
+
|
| 9 |
+
generator_g = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type='instancenorm')
|
| 10 |
+
generator_g.load_weights("vibrantGAN-generator-g-final.weights.h5")
|
| 11 |
+
|
| 12 |
+
def preprocess_single_image(image, target_height=256, target_width=256):
|
| 13 |
+
# Convert PIL image to tensorflow tensor
|
| 14 |
+
image = tf.convert_to_tensor(np.array(image))
|
| 15 |
+
|
| 16 |
+
# Ensure image has 3 channels (RGB)
|
| 17 |
+
if len(image.shape) == 2: # If grayscale
|
| 18 |
+
image = tf.stack([image, image, image], axis=-1)
|
| 19 |
+
elif image.shape[-1] == 4: # If RGBA
|
| 20 |
+
image = image[:, :, :3]
|
| 21 |
+
|
| 22 |
+
# Resize the image
|
| 23 |
+
image = tf.image.resize(image, [target_height, target_width])
|
| 24 |
+
|
| 25 |
+
# Normalize to [-1, 1]
|
| 26 |
+
image = tf.cast(image, tf.float32)
|
| 27 |
+
image = (image / 127.5) - 1
|
| 28 |
+
|
| 29 |
+
return image
|
| 30 |
+
|
| 31 |
+
def process_image(input_image):
|
| 32 |
+
if input_image is None:
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
# Get original input image size
|
| 36 |
+
original_size = input_image.size
|
| 37 |
+
|
| 38 |
+
# Preprocess the image
|
| 39 |
+
processed_input = preprocess_single_image(input_image)
|
| 40 |
+
|
| 41 |
+
# Add batch dimension
|
| 42 |
+
processed_input = tf.expand_dims(processed_input, 0)
|
| 43 |
+
|
| 44 |
+
# Generate prediction
|
| 45 |
+
prediction = generator_g(processed_input)
|
| 46 |
+
|
| 47 |
+
# Convert the prediction to displayable format
|
| 48 |
+
output_image = prediction[0] * 0.5 + 0.5 # Denormalize to [0, 1]
|
| 49 |
+
output_image = tf.clip_by_value(output_image, 0, 1)
|
| 50 |
+
|
| 51 |
+
# Convert to numpy array and then to PIL Image
|
| 52 |
+
output_array = (output_image.numpy() * 255).astype(np.uint8)
|
| 53 |
+
output_pil = Image.fromarray(output_array)
|
| 54 |
+
|
| 55 |
+
return output_pil
|
| 56 |
+
|
| 57 |
+
# Create Gradio interface
|
| 58 |
+
demo = gr.Interface(
|
| 59 |
+
fn=process_image,
|
| 60 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
| 61 |
+
outputs=gr.Image(type="pil", label="Generated Output"),
|
| 62 |
+
title="Image Processing Model",
|
| 63 |
+
description="Upload an image to see the model's output.",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the interface
|
| 67 |
+
demo.launch(debug=True)
|