Spaces:
Sleeping
Sleeping
File size: 8,516 Bytes
d4939ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
"""Create master CNEC list with 176 unique CNECs (168 physical + 8 Alegro).
This script:
1. Deduplicates physical CNECs from critical_cnecs_all.csv (200 → 168 unique)
2. Extracts 8 Alegro CNECs from tier1_with_alegro.csv
3. Combines into master list (176 unique)
4. Validates uniqueness and saves
Usage:
python scripts/create_master_cnec_list.py
"""
import sys
from pathlib import Path
import polars as pl
# Add src to path
sys.path.insert(0, str(Path(__file__).parent.parent / 'src'))
def deduplicate_physical_cnecs(input_path: Path, output_path: Path) -> pl.DataFrame:
"""Deduplicate physical CNECs keeping highest importance score per EIC.
Args:
input_path: Path to critical_cnecs_all.csv (200 rows)
output_path: Path to save deduplicated list
Returns:
DataFrame with 168 unique physical CNECs
"""
print("=" * 80)
print("STEP 1: DEDUPLICATE PHYSICAL CNECs")
print("=" * 80)
# Load all CNECs
all_cnecs = pl.read_csv(input_path)
print(f"\n[INPUT] Loaded {len(all_cnecs)} CNECs from {input_path.name}")
print(f" Unique EICs: {all_cnecs['cnec_eic'].n_unique()}")
# Find duplicates
duplicates = all_cnecs.filter(pl.col('cnec_eic').is_duplicated())
dup_eics = duplicates['cnec_eic'].unique()
print(f"\n[DUPLICATES] Found {len(dup_eics)} EICs appearing multiple times:")
print(f" Total duplicate rows: {len(duplicates)}")
# Show first 5 duplicate examples
print("\n[EXAMPLES] First 5 duplicate EICs:")
for i, eic in enumerate(dup_eics.head(5), 1):
dup_rows = all_cnecs.filter(pl.col('cnec_eic') == eic)
print(f"\n {i}. {eic} ({len(dup_rows)} occurrences):")
for row in dup_rows.iter_rows(named=True):
print(f" - {row['cnec_name'][:60]:<60s} (TSO: {row['tso']:<10s}, Score: {row['importance_score']:.2f})")
# Deduplicate: Keep highest importance score per EIC
deduped = (
all_cnecs
.sort('importance_score', descending=True) # Highest score first
.unique(subset=['cnec_eic'], keep='first') # Keep first (highest score)
.sort('importance_score', descending=True) # Re-sort by score
)
print(f"\n[DEDUPLICATION] Kept highest importance score per EIC")
print(f" Before: {len(all_cnecs)} rows, {all_cnecs['cnec_eic'].n_unique()} unique")
print(f" After: {len(deduped)} rows, {deduped['cnec_eic'].n_unique()} unique")
print(f" Removed: {len(all_cnecs) - len(deduped)} duplicate rows")
# Validate
assert deduped['cnec_eic'].n_unique() == len(deduped), "Deduplication failed - still have duplicates!"
assert len(deduped) == 168, f"Expected 168 unique CNECs, got {len(deduped)}"
# Add flags
deduped = deduped.with_columns([
pl.lit(False).alias('is_alegro'),
pl.lit(True).alias('is_physical')
])
# Save
output_path.parent.mkdir(parents=True, exist_ok=True)
deduped.write_csv(output_path)
print(f"\n[SAVED] {len(deduped)} unique physical CNECs to {output_path.name}")
print("=" * 80)
return deduped
def extract_alegro_cnecs(input_path: Path, output_path: Path) -> pl.DataFrame:
"""Extract 8 Alegro custom CNECs from tier1_with_alegro.csv.
Args:
input_path: Path to critical_cnecs_tier1_with_alegro.csv
output_path: Path to save Alegro CNECs
Returns:
DataFrame with 8 Alegro CNECs
"""
print("\nSTEP 2: EXTRACT ALEGRO CNECs")
print("=" * 80)
# Load tier1 with Alegro
tier1 = pl.read_csv(input_path)
print(f"\n[INPUT] Loaded {len(tier1)} Tier-1 CNECs from {input_path.name}")
# Filter Alegro CNECs (rows where tier contains "Alegro")
alegro = tier1.filter(pl.col('tier').str.contains('(?i)alegro'))
print(f"\n[ALEGRO] Found {len(alegro)} Alegro CNECs:")
for i, row in enumerate(alegro.iter_rows(named=True), 1):
print(f" {i}. {row['cnec_eic']:<30s} | {row['cnec_name'][:50]}")
# Validate
assert len(alegro) == 8, f"Expected 8 Alegro CNECs, found {len(alegro)}"
# Add flags
alegro = alegro.with_columns([
pl.lit(True).alias('is_alegro'),
pl.lit(False).alias('is_physical')
])
# Save
output_path.parent.mkdir(parents=True, exist_ok=True)
alegro.write_csv(output_path)
print(f"\n[SAVED] {len(alegro)} Alegro CNECs to {output_path.name}")
print("=" * 80)
return alegro
def create_master_list(
physical_path: Path,
alegro_path: Path,
output_path: Path
) -> pl.DataFrame:
"""Combine physical and Alegro CNECs into master list.
Args:
physical_path: Path to deduplicated physical CNECs (168)
alegro_path: Path to Alegro CNECs (8)
output_path: Path to save master list (176)
Returns:
DataFrame with 176 unique CNECs
"""
print("\nSTEP 3: CREATE MASTER CNEC LIST")
print("=" * 80)
# Load both
physical = pl.read_csv(physical_path)
alegro = pl.read_csv(alegro_path)
print(f"\n[INPUTS]")
print(f" Physical CNECs: {len(physical)}")
print(f" Alegro CNECs: {len(alegro)}")
print(f" Total: {len(physical) + len(alegro)}")
# Combine
master = pl.concat([physical, alegro])
# Validate uniqueness
assert master['cnec_eic'].n_unique() == len(master), "Master list has duplicate EICs!"
assert len(master) == 176, f"Expected 176 total CNECs, got {len(master)}"
# Sort by importance score
master = master.sort('importance_score', descending=True)
# Summary statistics
print(f"\n[MASTER LIST] Created {len(master)} unique CNECs")
print(f" Physical: {master['is_physical'].sum()} CNECs")
print(f" Alegro: {master['is_alegro'].sum()} CNECs")
print(f" Tier 1: {master.filter(pl.col('tier').str.contains('Tier 1')).shape[0]} CNECs")
print(f" Tier 2: {master.filter(pl.col('tier').str.contains('Tier 2')).shape[0]} CNECs")
# TSO distribution
print(f"\n[TSO DISTRIBUTION]")
tso_dist = (
master
.group_by('tso')
.agg(pl.len().alias('count'))
.sort('count', descending=True)
.head(10)
)
for row in tso_dist.iter_rows(named=True):
tso_name = row['tso'] if row['tso'] else '(Empty)'
print(f" {tso_name:<20s}: {row['count']:>3d} CNECs")
# Save
output_path.parent.mkdir(parents=True, exist_ok=True)
master.write_csv(output_path)
print(f"\n[SAVED] Master CNEC list to {output_path}")
print("=" * 80)
return master
def main():
"""Create master CNEC list (176 unique)."""
print("\n")
print("=" * 80)
print("CREATE MASTER CNEC LIST (176 UNIQUE)")
print("=" * 80)
print()
# Paths
base_dir = Path(__file__).parent.parent
data_dir = base_dir / 'data' / 'processed'
input_all = data_dir / 'critical_cnecs_all.csv'
input_alegro = data_dir / 'critical_cnecs_tier1_with_alegro.csv'
output_physical = data_dir / 'cnecs_physical_168.csv'
output_alegro = data_dir / 'cnecs_alegro_8.csv'
output_master = data_dir / 'cnecs_master_176.csv'
# Validate inputs exist
if not input_all.exists():
print(f"[ERROR] Input file not found: {input_all}")
print(" Please ensure data collection and CNEC identification are complete.")
sys.exit(1)
if not input_alegro.exists():
print(f"[ERROR] Input file not found: {input_alegro}")
print(" Please ensure Alegro CNEC list exists.")
sys.exit(1)
# Execute steps
physical_cnecs = deduplicate_physical_cnecs(input_all, output_physical)
alegro_cnecs = extract_alegro_cnecs(input_alegro, output_alegro)
master_cnecs = create_master_list(output_physical, output_alegro, output_master)
# Final summary
print("\n")
print("=" * 80)
print("SUMMARY")
print("=" * 80)
print(f"\nMaster CNEC List Created: {len(master_cnecs)} unique CNECs")
print(f" - Physical (deduplicated): {len(physical_cnecs)} CNECs")
print(f" - Alegro (custom): {len(alegro_cnecs)} CNECs")
print(f"\nOutput Files:")
print(f" 1. {output_physical.name}")
print(f" 2. {output_alegro.name}")
print(f" 3. {output_master.name} ⭐ PRIMARY")
print(f"\nThis master list is the SINGLE SOURCE OF TRUTH for all feature engineering.")
print("All JAO and ENTSO-E feature processing MUST use this exact list.")
print("=" * 80)
print()
if __name__ == "__main__":
main()
|