File size: 9,000 Bytes
7aa0336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Engineer 375 Weather features for FBMC forecasting.

Transforms OpenMeteo weather data into model-ready features:
1. Grid-level features (51 points × 7 vars = 357 features)
2. Temporal lags (3 vars × 4 time periods = 12 features)
3. Derived features (rate-of-change + stability = 6 features)

Total: 375 weather features

Weather Variables (7):
- temperature_2m (C)
- windspeed_10m (m/s)
- windspeed_100m (m/s) - for wind generation
- winddirection_100m (degrees)
- shortwave_radiation (W/m2) - for solar generation
- cloudcover (%)
- surface_pressure (hPa)

Author: Claude
Date: 2025-11-10
"""
from pathlib import Path
import polars as pl


def engineer_grid_level_features(weather_df: pl.DataFrame) -> pl.DataFrame:
    """Engineer grid-level weather features (51 points × 7 vars = 357 features).

    For each grid point, pivot all 7 weather variables to wide format:
    - temp_<grid_point>
    - wind10m_<grid_point>
    - wind100m_<grid_point>
    - winddir_<grid_point>
    - solar_<grid_point>
    - cloud_<grid_point>
    - pressure_<grid_point>
    """
    print("\n[1/5] Engineering grid-level features (51 points × 7 vars)...")

    # Pivot each weather variable separately
    features = None

    weather_vars = [
        ('temperature_2m', 'temp'),
        ('windspeed_10m', 'wind10m'),
        ('windspeed_100m', 'wind100m'),
        ('winddirection_100m', 'winddir'),
        ('shortwave_radiation', 'solar'),
        ('cloudcover', 'cloud'),
        ('surface_pressure', 'pressure')
    ]

    for orig_col, short_name in weather_vars:
        print(f"  Pivoting {orig_col}...")

        pivoted = weather_df.select(['timestamp', 'grid_point', orig_col]).pivot(
            values=orig_col,
            index='timestamp',
            on='grid_point',
            aggregate_function='first'
        )

        # Rename columns to <short_name>_<grid_point>
        rename_map = {}
        for col in pivoted.columns:
            if col != 'timestamp':
                rename_map[col] = f'{short_name}_{col}'

        pivoted = pivoted.rename(rename_map)

        # Join to features
        if features is None:
            features = pivoted
        else:
            features = features.join(pivoted, on='timestamp', how='left', coalesce=True)

    print(f"  [OK] {len(features.columns) - 1} grid-level features")
    return features


def engineer_temporal_lags(features: pl.DataFrame) -> pl.DataFrame:
    """Add temporal lags for key weather variables.

    Lags: 1h, 6h, 12h, 24h for:
    - Average temperature (1 lag feature)
    - Average wind speed (1 lag feature)
    - Average solar radiation (1 lag feature)

    Total: ~12 lag features (3 vars × 4 lags)
    """
    print("\n[2/3] Engineering temporal lags (1h, 6h, 12h, 24h)...")

    # Calculate system-wide averages for lagging
    # Temperature average (across all temp_ columns)
    temp_cols = [c for c in features.columns if c.startswith('temp_')]
    features = features.with_columns([
        pl.concat_list([pl.col(c) for c in temp_cols]).list.mean().alias('temp_avg')
    ])

    # Wind speed average (100m - for wind generation)
    wind_cols = [c for c in features.columns if c.startswith('wind100m_')]
    features = features.with_columns([
        pl.concat_list([pl.col(c) for c in wind_cols]).list.mean().alias('wind_avg')
    ])

    # Solar radiation average
    solar_cols = [c for c in features.columns if c.startswith('solar_')]
    features = features.with_columns([
        pl.concat_list([pl.col(c) for c in solar_cols]).list.mean().alias('solar_avg')
    ])

    # Add lags
    lag_vars = ['temp_avg', 'wind_avg', 'solar_avg']
    lag_hours = [1, 6, 12, 24]

    for var in lag_vars:
        for lag_h in lag_hours:
            features = features.with_columns([
                pl.col(var).shift(lag_h).alias(f'{var}_lag{lag_h}h')
            ])

    # Drop intermediate averages (keep only lagged versions)
    features = features.drop(['temp_avg', 'wind_avg', 'solar_avg'])

    lag_features = len(lag_vars) * len(lag_hours)
    print(f"  [OK] {lag_features} temporal lag features")
    return features


def engineer_derived_features(features: pl.DataFrame) -> pl.DataFrame:
    """Engineer derived weather features (6 features).

    Simple features without requiring calibration data:
    - Rate of change (hour-over-hour deltas): wind, solar, temperature
    - Weather stability (rolling std): wind, solar, temperature
    """
    print("\n[3/3] Engineering derived features (rate-of-change + stability)...")

    # Calculate system averages for rate-of-change and stability
    wind_cols = [c for c in features.columns if c.startswith('wind100m_')]
    solar_cols = [c for c in features.columns if c.startswith('solar_')]
    temp_cols = [c for c in features.columns if c.startswith('temp_')]

    features = features.with_columns([
        pl.concat_list([pl.col(c) for c in wind_cols]).list.mean().alias('wind_system_avg'),
        pl.concat_list([pl.col(c) for c in solar_cols]).list.mean().alias('solar_system_avg'),
        pl.concat_list([pl.col(c) for c in temp_cols]).list.mean().alias('temp_system_avg')
    ])

    # Rate of change (hour-over-hour deltas)
    # Captures sudden spikes/drops that correlate with grid constraints
    features = features.with_columns([
        pl.col('wind_system_avg').diff().alias('wind_rate_change'),
        pl.col('solar_system_avg').diff().alias('solar_rate_change'),
        pl.col('temp_system_avg').diff().alias('temp_rate_change')
    ])

    # Weather stability: 6-hour rolling std
    # Detects volatility periods (useful for forecasting uncertainty)
    features = features.with_columns([
        pl.col('wind_system_avg').rolling_std(window_size=6).alias('wind_stability_6h'),
        pl.col('solar_system_avg').rolling_std(window_size=6).alias('solar_stability_6h'),
        pl.col('temp_system_avg').rolling_std(window_size=6).alias('temp_stability_6h')
    ])

    # Drop intermediate columns
    features = features.drop(['wind_system_avg', 'solar_system_avg', 'temp_system_avg'])

    # Count derived features
    derived_cols = ['wind_rate_change', 'solar_rate_change', 'temp_rate_change',
                    'wind_stability_6h', 'solar_stability_6h', 'temp_stability_6h']

    print(f"  [OK] {len(derived_cols)} derived features")
    return features


def engineer_weather_features(
    weather_path: Path,
    output_dir: Path
) -> pl.DataFrame:
    """Main feature engineering pipeline for weather data.

    Args:
        weather_path: Path to raw weather data (weather_24month.parquet)
        output_dir: Directory to save engineered features

    Returns:
        DataFrame with ~435 weather features
    """
    print("=" * 80)
    print("WEATHER FEATURE ENGINEERING")
    print("=" * 80)
    print()
    print(f"Input: {weather_path}")
    print(f"Output: {output_dir}")
    print()

    # Load raw weather data
    print("Loading weather data...")
    weather_df = pl.read_parquet(weather_path)
    print(f"  [OK] {weather_df.shape[0]:,} rows × {weather_df.shape[1]} columns")
    print(f"  Date range: {weather_df['timestamp'].min()} to {weather_df['timestamp'].max()}")
    print()

    # 1. Grid-level features (51 × 7 = 357 features)
    all_features = engineer_grid_level_features(weather_df)

    # 2. Temporal lags (~12 features)
    all_features = engineer_temporal_lags(all_features)

    # 3. Derived features (6 features: rate-of-change + stability)
    all_features = engineer_derived_features(all_features)

    # Sort by timestamp
    all_features = all_features.sort('timestamp')

    # Final validation
    print("\n" + "=" * 80)
    print("FEATURE ENGINEERING COMPLETE")
    print("=" * 80)
    print(f"Total features: {all_features.shape[1] - 1} (excluding timestamp)")
    print(f"Total rows: {len(all_features):,}")

    # Check completeness
    null_count_total = all_features.null_count().sum_horizontal()[0]
    completeness = (1 - null_count_total / (all_features.shape[0] * all_features.shape[1])) * 100
    print(f"Completeness: {completeness:.2f}%")
    print()

    # Save features
    output_path = output_dir / 'features_weather_24month.parquet'
    all_features.write_parquet(output_path)

    file_size_mb = output_path.stat().st_size / (1024 ** 2)
    print(f"Features saved: {output_path}")
    print(f"File size: {file_size_mb:.2f} MB")
    print("=" * 80)
    print()

    return all_features


def main():
    """Main execution."""
    # Paths
    base_dir = Path.cwd()
    raw_dir = base_dir / 'data' / 'raw'
    processed_dir = base_dir / 'data' / 'processed'

    weather_path = raw_dir / 'weather_24month.parquet'

    # Verify file exists
    if not weather_path.exists():
        raise FileNotFoundError(f"Weather data not found: {weather_path}")

    # Engineer features
    features = engineer_weather_features(weather_path, processed_dir)

    print("SUCCESS: Weather features engineered and saved to data/processed/")


if __name__ == '__main__':
    main()