Spaces:
Sleeping
Sleeping
File size: 12,322 Bytes
27cb60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
"""Identify critical CNECs from 24-month SPARSE data (Phase 1).
Analyzes binding patterns across 24 months to identify the 200 most critical CNECs:
- Tier 1: Top 50 CNECs (full feature treatment)
- Tier 2: Next 150 CNECs (reduced features)
Outputs:
- data/processed/cnec_ranking_full.csv: All CNECs ranked by importance
- data/processed/critical_cnecs_tier1.csv: Top 50 CNEC EIC codes
- data/processed/critical_cnecs_tier2.csv: Next 150 CNEC EIC codes
- data/processed/critical_cnecs_all.csv: Combined 200 EIC codes for Phase 2
Usage:
python scripts/identify_critical_cnecs.py --input data/raw/phase1_24month/jao_cnec_ptdf.parquet
"""
import sys
from pathlib import Path
import polars as pl
import argparse
# Add src to path
sys.path.insert(0, str(Path(__file__).parent.parent / 'src'))
def calculate_cnec_importance(
df: pl.DataFrame,
total_hours: int
) -> pl.DataFrame:
"""Calculate importance score for each CNEC.
Importance Score Formula:
importance = binding_freq × avg_shadow_price × (1 - avg_margin_ratio)
Where:
- binding_freq: Fraction of hours CNEC appears in active constraints
- avg_shadow_price: Average shadow price when binding (economic impact)
- avg_margin_ratio: Average ram/fmax (proximity to limit, lower = more critical)
Args:
df: SPARSE CNEC data (active constraints only)
total_hours: Total hours in dataset (for binding frequency calculation)
Returns:
DataFrame with CNEC rankings and statistics
"""
cnec_stats = (
df
.group_by('cnec_eic', 'cnec_name', 'tso')
.agg([
# Occurrence count: how many hours this CNEC was active
pl.len().alias('active_hours'),
# Shadow price statistics (economic impact)
pl.col('shadow_price').mean().alias('avg_shadow_price'),
pl.col('shadow_price').max().alias('max_shadow_price'),
pl.col('shadow_price').quantile(0.95).alias('p95_shadow_price'),
# RAM statistics (capacity utilization)
pl.col('ram').mean().alias('avg_ram'),
pl.col('fmax').mean().alias('avg_fmax'),
(pl.col('ram') / pl.col('fmax')).mean().alias('avg_margin_ratio'),
# Binding severity: fraction of active hours where shadow_price > 0
(pl.col('shadow_price') > 0).mean().alias('binding_severity'),
# PTDF volatility: average absolute PTDF across zones (network impact)
pl.concat_list([
pl.col('ptdf_AT').abs(),
pl.col('ptdf_BE').abs(),
pl.col('ptdf_CZ').abs(),
pl.col('ptdf_DE').abs(),
pl.col('ptdf_FR').abs(),
pl.col('ptdf_HR').abs(),
pl.col('ptdf_HU').abs(),
pl.col('ptdf_NL').abs(),
pl.col('ptdf_PL').abs(),
pl.col('ptdf_RO').abs(),
pl.col('ptdf_SI').abs(),
pl.col('ptdf_SK').abs(),
]).list.mean().alias('avg_abs_ptdf')
])
.with_columns([
# Binding frequency: fraction of total hours CNEC was active
(pl.col('active_hours') / total_hours).alias('binding_freq'),
# Importance score (primary ranking metric)
(
(pl.col('active_hours') / total_hours) * # binding_freq
pl.col('avg_shadow_price') * # economic impact
(1 - pl.col('avg_margin_ratio')) # criticality (1 - ram/fmax)
).alias('importance_score')
])
.sort('importance_score', descending=True)
)
return cnec_stats
def export_tier_eic_codes(
cnec_stats: pl.DataFrame,
tier_name: str,
start_idx: int,
count: int,
output_path: Path
) -> pl.DataFrame:
"""Export EIC codes for a specific tier.
Args:
cnec_stats: DataFrame with CNEC rankings
tier_name: Tier label (e.g., "Tier 1", "Tier 2")
start_idx: Starting index in ranking (0-based)
count: Number of CNECs to include
output_path: Path to save CSV
Returns:
DataFrame with selected CNECs
"""
tier_cnecs = cnec_stats.slice(start_idx, count)
# Create export DataFrame with essential info
export_df = tier_cnecs.select([
pl.col('cnec_eic'),
pl.col('cnec_name'),
pl.col('tso'),
pl.lit(tier_name).alias('tier'),
pl.col('importance_score'),
pl.col('binding_freq'),
pl.col('avg_shadow_price'),
pl.col('active_hours')
])
# Save to CSV
output_path.parent.mkdir(parents=True, exist_ok=True)
export_df.write_csv(output_path)
print(f"\n{tier_name} CNECs ({count}):")
print(f" EIC codes saved to: {output_path}")
print(f" Importance score range: [{tier_cnecs['importance_score'].min():.2f}, {tier_cnecs['importance_score'].max():.2f}]")
print(f" Binding frequency range: [{tier_cnecs['binding_freq'].min():.2%}, {tier_cnecs['binding_freq'].max():.2%}]")
return export_df
def main():
"""Identify critical CNECs from 24-month SPARSE data."""
parser = argparse.ArgumentParser(
description="Identify critical CNECs for Phase 2 feature engineering"
)
parser.add_argument(
'--input',
type=Path,
required=True,
help='Path to 24-month SPARSE CNEC data (jao_cnec_ptdf.parquet)'
)
parser.add_argument(
'--tier1-count',
type=int,
default=50,
help='Number of Tier 1 CNECs (default: 50)'
)
parser.add_argument(
'--tier2-count',
type=int,
default=150,
help='Number of Tier 2 CNECs (default: 150)'
)
parser.add_argument(
'--output-dir',
type=Path,
default=Path('data/processed'),
help='Output directory for results (default: data/processed)'
)
args = parser.parse_args()
print("=" * 80)
print("CRITICAL CNEC IDENTIFICATION (Phase 1 Analysis)")
print("=" * 80)
print()
# Load 24-month SPARSE CNEC data
print(f"Loading SPARSE CNEC data from: {args.input}")
if not args.input.exists():
print(f"[ERROR] Input file not found: {args.input}")
print(" Please run Phase 1 data collection first:")
print(" python scripts/collect_jao_complete.py --start-date 2023-10-01 --end-date 2025-09-30 --output-dir data/raw/phase1_24month")
sys.exit(1)
cnec_df = pl.read_parquet(args.input)
print(f"[OK] Loaded {cnec_df.shape[0]:,} records")
print(f" Columns: {cnec_df.shape[1]}")
print()
# Filter out CNECs without EIC codes (needed for Phase 2 collection)
null_eic_count = cnec_df.filter(pl.col('cnec_eic').is_null()).shape[0]
if null_eic_count > 0:
print(f"[WARNING] Filtering out {null_eic_count:,} records with null EIC codes")
cnec_df = cnec_df.filter(pl.col('cnec_eic').is_not_null())
print(f"[OK] Remaining records: {cnec_df.shape[0]:,}")
print()
# Calculate total hours in dataset
if 'collection_date' in cnec_df.columns:
unique_dates = cnec_df['collection_date'].n_unique()
total_hours = unique_dates * 24 # Approximate (handles DST)
else:
# Fallback: estimate from data
total_hours = len(cnec_df) // cnec_df['cnec_eic'].n_unique()
print(f"Dataset coverage:")
print(f" Unique dates: {unique_dates if 'collection_date' in cnec_df.columns else 'Unknown'}")
print(f" Estimated total hours: {total_hours:,}")
print(f" Unique CNECs: {cnec_df['cnec_eic'].n_unique()}")
print()
# Calculate CNEC importance scores
print("Calculating CNEC importance scores...")
cnec_stats = calculate_cnec_importance(cnec_df, total_hours)
print(f"[OK] Analyzed {cnec_stats.shape[0]} unique CNECs")
print()
# Display top 10 CNECs
print("=" * 80)
print("TOP 10 MOST CRITICAL CNECs")
print("=" * 80)
top10 = cnec_stats.head(10)
for i, row in enumerate(top10.iter_rows(named=True), 1):
print(f"\n{i}. {row['cnec_name'][:60]}")
eic_display = row['cnec_eic'][:16] + "..." if row['cnec_eic'] else "N/A"
print(f" TSO: {row['tso']:<15s} | EIC: {eic_display}")
print(f" Importance Score: {row['importance_score']:>8.2f}")
print(f" Binding Frequency: {row['binding_freq']:>6.2%} ({row['active_hours']:,} hours)")
print(f" Avg Shadow Price: €{row['avg_shadow_price']:>6.2f}/MW (max: €{row['max_shadow_price']:.2f})")
print(f" Avg Margin Ratio: {row['avg_margin_ratio']:>6.2%} (RAM/Fmax)")
print()
print("=" * 80)
# Export Tier 1 CNECs (Top 50)
tier1_df = export_tier_eic_codes(
cnec_stats,
tier_name="Tier 1",
start_idx=0,
count=args.tier1_count,
output_path=args.output_dir / "critical_cnecs_tier1.csv"
)
# Export Tier 2 CNECs (Next 150)
tier2_df = export_tier_eic_codes(
cnec_stats,
tier_name="Tier 2",
start_idx=args.tier1_count,
count=args.tier2_count,
output_path=args.output_dir / "critical_cnecs_tier2.csv"
)
# Export combined list (all 200)
combined_df = pl.concat([tier1_df, tier2_df])
combined_path = args.output_dir / "critical_cnecs_all.csv"
combined_df.write_csv(combined_path)
print(f"\nCombined list (all 200 CNECs):")
print(f" EIC codes saved to: {combined_path}")
# Export full ranking with detailed statistics
full_ranking_path = args.output_dir / "cnec_ranking_full.csv"
# Drop any nested columns that CSV cannot handle
export_cols = [c for c in cnec_stats.columns if cnec_stats[c].dtype != pl.List]
cnec_stats.select(export_cols).write_csv(full_ranking_path)
print(f"\nFull CNEC ranking:")
print(f" All {cnec_stats.shape[0]} CNECs saved to: {full_ranking_path}")
# Summary statistics
print()
print("=" * 80)
print("SUMMARY")
print("=" * 80)
print(f"\nTotal CNECs analyzed: {cnec_stats.shape[0]}")
print(f"Critical CNECs selected: {args.tier1_count + args.tier2_count}")
print(f" - Tier 1 (full features): {args.tier1_count}")
print(f" - Tier 2 (reduced features): {args.tier2_count}")
print(f"\nImportance score distribution:")
print(f" Min: {cnec_stats['importance_score'].min():.2f}")
print(f" Max: {cnec_stats['importance_score'].max():.2f}")
print(f" Median: {cnec_stats['importance_score'].median():.2f}")
print(f" Tier 1 cutoff: {cnec_stats['importance_score'][args.tier1_count]:.2f}")
print(f" Tier 2 cutoff: {cnec_stats['importance_score'][args.tier1_count + args.tier2_count]:.2f}")
print(f"\nBinding frequency distribution (all CNECs):")
print(f" Min: {cnec_stats['binding_freq'].min():.2%}")
print(f" Max: {cnec_stats['binding_freq'].max():.2%}")
print(f" Median: {cnec_stats['binding_freq'].median():.2%}")
print(f"\nTier 1 binding frequency:")
print(f" Range: [{tier1_df['binding_freq'].min():.2%}, {tier1_df['binding_freq'].max():.2%}]")
print(f" Mean: {tier1_df['binding_freq'].mean():.2%}")
print(f"\nTier 2 binding frequency:")
print(f" Range: [{tier2_df['binding_freq'].min():.2%}, {tier2_df['binding_freq'].max():.2%}]")
print(f" Mean: {tier2_df['binding_freq'].mean():.2%}")
# TSO distribution
print(f"\nTier 1 TSO distribution:")
tier1_tsos = tier1_df.group_by('tso').agg(pl.len().alias('count')).sort('count', descending=True)
for row in tier1_tsos.iter_rows(named=True):
print(f" {row['tso']:<15s}: {row['count']:>3d} CNECs ({row['count']/args.tier1_count*100:.1f}%)")
print(f"\nPhase 2 Data Collection:")
print(f" Use EIC codes from: {combined_path}")
print(f" Expected records: {args.tier1_count + args.tier2_count} CNECs × {total_hours:,} hours = {(args.tier1_count + args.tier2_count) * total_hours:,}")
print(f" Estimated file size: ~100-150 MB (compressed parquet)")
print()
print("=" * 80)
print("IDENTIFICATION COMPLETE")
print("=" * 80)
print()
print("[NEXT STEP] Collect DENSE CNEC data for Phase 2 feature engineering:")
print(" See: doc/final_domain_research.md for collection methods")
if __name__ == "__main__":
main()
|