File size: 10,521 Bytes
8fd4a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""Unified Features Generation - Checkpoint-Based Workflow

Combines JAO (1,737) + ENTSO-E (297) + Weather (376) features = 2,410 total features
Executes step-by-step with checkpoints for fast debugging.

Author: Claude
Date: 2025-11-11
"""

import sys
from pathlib import Path
import polars as pl
from datetime import datetime

# Paths
BASE_DIR = Path(__file__).parent.parent
RAW_DIR = BASE_DIR / 'data' / 'raw'
PROCESSED_DIR = BASE_DIR / 'data' / 'processed'

# Input files
JAO_FILE = PROCESSED_DIR / 'features_jao_24month.parquet'
ENTSOE_FILE = PROCESSED_DIR / 'features_entsoe_24month.parquet'
WEATHER_FILE = PROCESSED_DIR / 'features_weather_24month.parquet'

# Output files
UNIFIED_FILE = PROCESSED_DIR / 'features_unified_24month.parquet'
METADATA_FILE = PROCESSED_DIR / 'features_unified_metadata.csv'

print("="*80)
print("UNIFIED FEATURES GENERATION - CHECKPOINT WORKFLOW")
print("="*80)
print()

# ============================================================================
# CHECKPOINT 1: Load Input Files
# ============================================================================
print("[CHECKPOINT 1] Loading input files...")
print()

try:
    jao_raw = pl.read_parquet(JAO_FILE)
    print(f"[OK] JAO features loaded: {jao_raw.shape[0]:,} rows x {jao_raw.shape[1]} cols")

    entsoe_raw = pl.read_parquet(ENTSOE_FILE)
    print(f"[OK] ENTSO-E features loaded: {entsoe_raw.shape[0]:,} rows x {entsoe_raw.shape[1]} cols")

    weather_raw = pl.read_parquet(WEATHER_FILE)
    print(f"[OK] Weather features loaded: {weather_raw.shape[0]:,} rows x {weather_raw.shape[1]} cols")
    print()
except Exception as e:
    print(f"[ERROR] Failed to load input files: {e}")
    sys.exit(1)

# ============================================================================
# CHECKPOINT 2: Standardize Timestamps
# ============================================================================
print("[CHECKPOINT 2] Standardizing timestamps...")
print()

try:
    # JAO: Convert mtu to UTC timestamp (remove timezone, use microseconds)
    jao_std = jao_raw.with_columns([
        pl.col('mtu').dt.convert_time_zone('UTC').dt.replace_time_zone(None).dt.cast_time_unit('us').alias('timestamp')
    ]).drop('mtu')
    print(f"[OK] JAO timestamps standardized")

    # ENTSO-E: Remove timezone, ensure microsecond precision
    entsoe_std = entsoe_raw.with_columns([
        pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('us')
    ])
    print(f"[OK] ENTSO-E timestamps standardized")

    # Weather: Remove timezone, ensure microsecond precision
    weather_std = weather_raw.with_columns([
        pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('us')
    ])
    print(f"[OK] Weather timestamps standardized")
    print()
except Exception as e:
    print(f"[ERROR] Timestamp standardization failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 3: Find Common Date Range
# ============================================================================
print("[CHECKPOINT 3] Finding common date range...")
print()

try:
    jao_min, jao_max = jao_std['timestamp'].min(), jao_std['timestamp'].max()
    entsoe_min, entsoe_max = entsoe_std['timestamp'].min(), entsoe_std['timestamp'].max()
    weather_min, weather_max = weather_std['timestamp'].min(), weather_std['timestamp'].max()

    print(f"JAO range:     {jao_min} to {jao_max}")
    print(f"ENTSO-E range: {entsoe_min} to {entsoe_max}")
    print(f"Weather range: {weather_min} to {weather_max}")
    print()

    common_min = max(jao_min, entsoe_min, weather_min)
    common_max = min(jao_max, entsoe_max, weather_max)

    print(f"[OK] Common range: {common_min} to {common_max}")
    print()
except Exception as e:
    print(f"[ERROR] Date range calculation failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 4: Filter to Common Range
# ============================================================================
print("[CHECKPOINT 4] Filtering to common date range...")
print()

try:
    jao_filtered = jao_std.filter(
        (pl.col('timestamp') >= common_min) & (pl.col('timestamp') <= common_max)
    ).sort('timestamp')
    print(f"[OK] JAO filtered: {jao_filtered.shape[0]:,} rows")

    entsoe_filtered = entsoe_std.filter(
        (pl.col('timestamp') >= common_min) & (pl.col('timestamp') <= common_max)
    ).sort('timestamp')
    print(f"[OK] ENTSO-E filtered: {entsoe_filtered.shape[0]:,} rows")

    weather_filtered = weather_std.filter(
        (pl.col('timestamp') >= common_min) & (pl.col('timestamp') <= common_max)
    ).sort('timestamp')
    print(f"[OK] Weather filtered: {weather_filtered.shape[0]:,} rows")
    print()
except Exception as e:
    print(f"[ERROR] Filtering failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 5: Merge Datasets
# ============================================================================
print("[CHECKPOINT 5] Merging datasets horizontally...")
print()

try:
    # Start with JAO (has timestamp)
    unified_df = jao_filtered

    # Join ENTSO-E on timestamp
    entsoe_to_join = entsoe_filtered.drop('timestamp')  # Drop duplicate timestamp column
    unified_df = unified_df.hstack(entsoe_to_join)
    print(f"[OK] ENTSO-E merged: {unified_df.shape[1]} total columns")

    # Join Weather on timestamp
    weather_to_join = weather_filtered.drop('timestamp')  # Drop duplicate timestamp column
    unified_df = unified_df.hstack(weather_to_join)
    print(f"[OK] Weather merged: {unified_df.shape[1]} total columns")
    print()

    print(f"Final unified shape: {unified_df.shape[0]:,} rows x {unified_df.shape[1]} columns")
    print()
except Exception as e:
    print(f"[ERROR] Merge failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 6: Data Quality Check
# ============================================================================
print("[CHECKPOINT 6] Running data quality checks...")
print()

try:
    # Check for nulls
    null_counts = unified_df.null_count()
    total_nulls = null_counts.sum_horizontal()[0]
    total_cells = unified_df.shape[0] * unified_df.shape[1]
    completeness = (1 - total_nulls / total_cells) * 100

    print(f"Data completeness: {completeness:.2f}%")
    print(f"Total null values: {total_nulls:,} / {total_cells:,}")
    print()

    # Check timestamp continuity
    timestamps = unified_df['timestamp'].sort()
    time_diffs = timestamps.diff().dt.total_hours()
    gaps = time_diffs.filter((time_diffs.is_not_null()) & (time_diffs != 1))

    print(f"Timestamp continuity check:")
    print(f"  - Total timestamps: {len(timestamps):,}")
    print(f"  - Gaps detected: {len(gaps)}")
    print(f"  - Continuous: {'YES' if len(gaps) == 0 else 'NO'}")
    print()
except Exception as e:
    print(f"[ERROR] Quality check failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 7: Save Unified Features
# ============================================================================
print("[CHECKPOINT 7] Saving unified features file...")
print()

try:
    PROCESSED_DIR.mkdir(parents=True, exist_ok=True)
    unified_df.write_parquet(UNIFIED_FILE)

    file_size_mb = UNIFIED_FILE.stat().st_size / (1024 * 1024)
    print(f"[OK] Saved to: {UNIFIED_FILE}")
    print(f"[OK] File size: {file_size_mb:.1f} MB")
    print()
except Exception as e:
    print(f"[ERROR] Save failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# CHECKPOINT 8: Generate Feature Metadata
# ============================================================================
print("[CHECKPOINT 8] Generating feature metadata...")
print()

try:
    # Create metadata catalog
    feature_cols = [c for c in unified_df.columns if c != 'timestamp']

    metadata_rows = []
    for i, col in enumerate(feature_cols, 1):
        # Determine category from column name
        if col.startswith('border_'):
            category = 'JAO_Border'
        elif col.startswith('cnec_'):
            category = 'JAO_CNEC'
        elif '_lta_' in col:
            category = 'LTA'
        elif '_load_forecast_' in col:
            category = 'Load_Forecast'
        elif '_gen_outage_' in col or '_tx_outage_' in col:
            category = 'Outages'
        elif any(col.startswith(prefix) for prefix in ['AT_', 'BE_', 'CZ_', 'DE_', 'FR_', 'HR_', 'HU_', 'NL_', 'PL_', 'RO_', 'SI_', 'SK_']):
            category = 'Weather'
        else:
            category = 'Other'

        metadata_rows.append({
            'feature_index': i,
            'feature_name': col,
            'category': category,
            'null_count': unified_df[col].null_count(),
            'dtype': str(unified_df[col].dtype)
        })

    metadata_df = pl.DataFrame(metadata_rows)
    metadata_df.write_csv(METADATA_FILE)

    print(f"[OK] Saved metadata: {METADATA_FILE}")
    print(f"[OK] Total features: {len(feature_cols)}")
    print()

    # Category breakdown
    category_counts = metadata_df.group_by('category').agg(pl.count().alias('count')).sort('count', descending=True)
    print("Feature breakdown by category:")
    for row in category_counts.iter_rows(named=True):
        print(f"  - {row['category']}: {row['count']}")
    print()

except Exception as e:
    print(f"[ERROR] Metadata generation failed: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

# ============================================================================
# FINAL SUMMARY
# ============================================================================
print("="*80)
print("UNIFIED FEATURES GENERATION COMPLETE")
print("="*80)
print()
print(f"Output file: {UNIFIED_FILE}")
print(f"Shape: {unified_df.shape[0]:,} rows x {unified_df.shape[1]} columns")
print(f"Date range: {unified_df['timestamp'].min()} to {unified_df['timestamp'].max()}")
print(f"Data completeness: {completeness:.2f}%")
print(f"File size: {file_size_mb:.1f} MB")
print()
print("[SUCCESS] All checkpoints passed!")
print()