Spaces:
Sleeping
Sleeping
Evgueni Poloukarov
Claude
commited on
Commit
·
12f45c0
1
Parent(s):
c0dc80e
refactor: convert HF Space from JupyterLab to Gradio API
Browse filesArchitecture Change:
- Replace interactive notebooks with API endpoint
- HF Space now serves as inference API (not development environment)
New Components:
- app.py: Gradio web interface for triggering forecasts
- chronos_inference.py: Production inference pipeline
- Supports smoke test (7 days) and full forecast (14 days)
Benefits:
- No SSH resource limit issues (exit code 137)
- API-first design (can call from local machine)
- Model caching (loaded once, stays in memory)
- Results downloadable as parquet files
- Local development → Remote GPU inference workflow
Usage:
1. Web UI: https://huggingface.co/spaces/evgueni-p/fbmc-chronos2
2. Python API: gradio_client.Client("evgueni-p/fbmc-chronos2").predict()
Co-Authored-By: Claude <[email protected]>
- README.md +33 -13
- app.py +138 -0
- requirements.txt +3 -6
- src/forecasting/chronos_inference.py +296 -0
README.md
CHANGED
|
@@ -3,32 +3,52 @@ title: FBMC Chronos-2 Forecasting
|
|
| 3 |
emoji: ⚡
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
-
sdk:
|
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
tags:
|
| 9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
suggested_storage: small
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# FBMC Flow-Based Market Coupling Forecasting
|
| 14 |
|
| 15 |
-
Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos
|
| 16 |
|
| 17 |
## 🚀 Quick Start
|
| 18 |
|
| 19 |
-
This HuggingFace Space provides
|
| 20 |
|
| 21 |
-
###
|
| 22 |
|
| 23 |
-
1.
|
| 24 |
-
2.
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
### How to Use
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
## 📊 Dataset
|
| 34 |
|
|
|
|
| 3 |
emoji: ⚡
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
tags:
|
| 11 |
+
- forecasting
|
| 12 |
+
- time-series
|
| 13 |
+
- electricity
|
| 14 |
+
- zero-shot
|
| 15 |
+
suggested_hardware: t4-small
|
| 16 |
suggested_storage: small
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# FBMC Flow-Based Market Coupling Forecasting API
|
| 20 |
|
| 21 |
+
Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos-2.
|
| 22 |
|
| 23 |
## 🚀 Quick Start
|
| 24 |
|
| 25 |
+
This HuggingFace Space provides a **Gradio API** for GPU-accelerated zero-shot forecasting.
|
| 26 |
|
| 27 |
+
### How to Use (Web Interface)
|
| 28 |
|
| 29 |
+
1. **Select run date**: Choose the forecast date (YYYY-MM-DD format)
|
| 30 |
+
2. **Choose forecast type**:
|
| 31 |
+
- **Smoke Test**: 1 border × 7 days (~30 seconds)
|
| 32 |
+
- **Full Forecast**: All 38 borders × 14 days (~5 minutes)
|
| 33 |
+
3. **Click "Run Forecast"**
|
| 34 |
+
4. **Download results**: Parquet file with probabilistic forecasts
|
| 35 |
|
| 36 |
+
### How to Use (Python API)
|
| 37 |
|
| 38 |
+
```python
|
| 39 |
+
from gradio_client import Client
|
| 40 |
+
|
| 41 |
+
client = Client("evgueni-p/fbmc-chronos2")
|
| 42 |
+
result_file = client.predict(
|
| 43 |
+
run_date="2025-09-30",
|
| 44 |
+
forecast_type="smoke_test"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Download and analyze locally
|
| 48 |
+
import polars as pl
|
| 49 |
+
df = pl.read_parquet(result_file)
|
| 50 |
+
print(df.head())
|
| 51 |
+
```
|
| 52 |
|
| 53 |
## 📊 Dataset
|
| 54 |
|
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
FBMC Chronos-2 Forecasting API
|
| 4 |
+
HuggingFace Space Gradio Interface
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from src.forecasting.chronos_inference import run_inference
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Global configuration
|
| 14 |
+
FORECAST_TYPES = {
|
| 15 |
+
"smoke_test": "Smoke Test (1 border × 7 days)",
|
| 16 |
+
"full_14day": "Full Forecast (All borders × 14 days)"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def forecast_api(run_date_str, forecast_type):
|
| 21 |
+
"""
|
| 22 |
+
API endpoint for triggering forecasts.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
run_date_str: Date in YYYY-MM-DD format
|
| 26 |
+
forecast_type: 'smoke_test' or 'full_14day'
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
Path to downloadable forecast results file
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
# Validate run date
|
| 33 |
+
run_date = datetime.strptime(run_date_str, "%Y-%m-%d")
|
| 34 |
+
|
| 35 |
+
# Run inference
|
| 36 |
+
result_path = run_inference(
|
| 37 |
+
run_date=run_date_str,
|
| 38 |
+
forecast_type=forecast_type,
|
| 39 |
+
output_dir="/tmp"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
return result_path
|
| 43 |
+
|
| 44 |
+
except Exception as e:
|
| 45 |
+
error_msg = f"Error: {str(e)}"
|
| 46 |
+
print(error_msg)
|
| 47 |
+
# Return error message as text file
|
| 48 |
+
error_path = "/tmp/error.txt"
|
| 49 |
+
with open(error_path, 'w') as f:
|
| 50 |
+
f.write(error_msg)
|
| 51 |
+
return error_path
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Build Gradio interface
|
| 55 |
+
with gr.Blocks(title="FBMC Chronos-2 Forecasting") as demo:
|
| 56 |
+
gr.Markdown("""
|
| 57 |
+
# FBMC Chronos-2 Zero-Shot Forecasting API
|
| 58 |
+
|
| 59 |
+
**Flow-Based Market Coupling** electricity flow forecasting using Amazon Chronos-2.
|
| 60 |
+
|
| 61 |
+
This Space provides GPU-accelerated zero-shot inference for cross-border electricity flows.
|
| 62 |
+
""")
|
| 63 |
+
|
| 64 |
+
with gr.Row():
|
| 65 |
+
with gr.Column():
|
| 66 |
+
gr.Markdown("### Configuration")
|
| 67 |
+
|
| 68 |
+
run_date_input = gr.Textbox(
|
| 69 |
+
label="Run Date (YYYY-MM-DD)",
|
| 70 |
+
value="2025-09-30",
|
| 71 |
+
placeholder="2025-09-30",
|
| 72 |
+
info="Date when forecast is made (data up to this date is historical)"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
forecast_type_input = gr.Radio(
|
| 76 |
+
choices=list(FORECAST_TYPES.keys()),
|
| 77 |
+
value="smoke_test",
|
| 78 |
+
label="Forecast Type",
|
| 79 |
+
info="Smoke test: Quick validation (1 border, 7 days). Full: Production forecast (all borders, 14 days)"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
submit_btn = gr.Button("Run Forecast", variant="primary")
|
| 83 |
+
|
| 84 |
+
with gr.Column():
|
| 85 |
+
gr.Markdown("### Results")
|
| 86 |
+
|
| 87 |
+
output_file = gr.File(
|
| 88 |
+
label="Download Forecast Results",
|
| 89 |
+
type="filepath"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
gr.Markdown("""
|
| 93 |
+
**Output format**: Parquet file with columns:
|
| 94 |
+
- `timestamp`: Hourly timestamps (D+1 to D+7 or D+14)
|
| 95 |
+
- `{border}_median`: Median forecast (MW)
|
| 96 |
+
- `{border}_q10`: 10th percentile (MW)
|
| 97 |
+
- `{border}_q90`: 90th percentile (MW)
|
| 98 |
+
|
| 99 |
+
**Inference environment**:
|
| 100 |
+
- GPU: NVIDIA T4 (16GB VRAM)
|
| 101 |
+
- Model: Chronos-T5-Large (710M parameters)
|
| 102 |
+
- Precision: bfloat16
|
| 103 |
+
""")
|
| 104 |
+
|
| 105 |
+
# Wire up the interface
|
| 106 |
+
submit_btn.click(
|
| 107 |
+
fn=forecast_api,
|
| 108 |
+
inputs=[run_date_input, forecast_type_input],
|
| 109 |
+
outputs=output_file
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
gr.Markdown("""
|
| 113 |
+
---
|
| 114 |
+
### About
|
| 115 |
+
|
| 116 |
+
**Zero-shot forecasting**: No model training required. The pre-trained Chronos-2 model
|
| 117 |
+
generalizes directly to FBMC cross-border flows using historical patterns and future covariates.
|
| 118 |
+
|
| 119 |
+
**Features**:
|
| 120 |
+
- 2,553 engineered features (weather, CNEC constraints, load forecasts, LTA)
|
| 121 |
+
- 24-month historical context (Oct 2023 - Oct 2025)
|
| 122 |
+
- Time-aware extraction (prevents data leakage)
|
| 123 |
+
- Probabilistic forecasts (10th/50th/90th percentiles)
|
| 124 |
+
|
| 125 |
+
**Performance**:
|
| 126 |
+
- Smoke test: ~30 seconds (1 border × 168 hours)
|
| 127 |
+
- Full forecast: ~5 minutes (38 borders × 336 hours)
|
| 128 |
+
|
| 129 |
+
**Project**: FBMC Flow Forecasting MVP | **Author**: Evgueni Poloukarov
|
| 130 |
+
""")
|
| 131 |
+
|
| 132 |
+
# Launch the app
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
demo.launch(
|
| 135 |
+
server_name="0.0.0.0",
|
| 136 |
+
server_port=7860,
|
| 137 |
+
share=False
|
| 138 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
-
#
|
| 2 |
-
|
| 3 |
-
tornado==6.2
|
| 4 |
-
ipywidgets
|
| 5 |
|
| 6 |
# Core ML/Data
|
| 7 |
torch>=2.0.0
|
|
@@ -14,9 +12,8 @@ pyarrow>=13.0.0
|
|
| 14 |
# HuggingFace
|
| 15 |
huggingface-hub>=0.19.0
|
| 16 |
|
| 17 |
-
# Visualization
|
| 18 |
altair>=5.0.0
|
| 19 |
-
vega-datasets
|
| 20 |
|
| 21 |
# Utilities
|
| 22 |
python-dotenv
|
|
|
|
| 1 |
+
# Gradio
|
| 2 |
+
gradio==4.44.0
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# Core ML/Data
|
| 5 |
torch>=2.0.0
|
|
|
|
| 12 |
# HuggingFace
|
| 13 |
huggingface-hub>=0.19.0
|
| 14 |
|
| 15 |
+
# Visualization (for local analysis)
|
| 16 |
altair>=5.0.0
|
|
|
|
| 17 |
|
| 18 |
# Utilities
|
| 19 |
python-dotenv
|
src/forecasting/chronos_inference.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Chronos-2 Inference Pipeline
|
| 4 |
+
Standalone inference script for HuggingFace Space deployment.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
from typing import List, Dict, Optional
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
import polars as pl
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import torch
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from chronos import ChronosPipeline
|
| 16 |
+
|
| 17 |
+
from .dynamic_forecast import DynamicForecast
|
| 18 |
+
from .feature_availability import FeatureAvailability
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ChronosInferencePipeline:
|
| 22 |
+
"""
|
| 23 |
+
Production inference pipeline for Chronos-2 zero-shot forecasting.
|
| 24 |
+
Designed for deployment as API endpoint on HuggingFace Spaces.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
model_name: str = "amazon/chronos-t5-large",
|
| 30 |
+
device: str = "cuda",
|
| 31 |
+
dtype: str = "bfloat16"
|
| 32 |
+
):
|
| 33 |
+
"""
|
| 34 |
+
Initialize inference pipeline.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
model_name: HuggingFace model identifier
|
| 38 |
+
device: Device for inference ('cuda' or 'cpu')
|
| 39 |
+
dtype: Data type for model weights
|
| 40 |
+
"""
|
| 41 |
+
self.model_name = model_name
|
| 42 |
+
self.device = device
|
| 43 |
+
self.dtype = dtype
|
| 44 |
+
|
| 45 |
+
# Model loaded on first inference (lazy loading)
|
| 46 |
+
self._pipeline = None
|
| 47 |
+
self._dataset = None
|
| 48 |
+
self._borders = None
|
| 49 |
+
|
| 50 |
+
def _load_model(self):
|
| 51 |
+
"""Load Chronos model (cached after first call)"""
|
| 52 |
+
if self._pipeline is None:
|
| 53 |
+
print(f"Loading {self.model_name}...")
|
| 54 |
+
start_time = time.time()
|
| 55 |
+
|
| 56 |
+
dtype_map = {
|
| 57 |
+
"bfloat16": torch.bfloat16,
|
| 58 |
+
"float16": torch.float16,
|
| 59 |
+
"float32": torch.float32
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
self._pipeline = ChronosPipeline.from_pretrained(
|
| 63 |
+
self.model_name,
|
| 64 |
+
device_map=self.device,
|
| 65 |
+
torch_dtype=dtype_map.get(self.dtype, torch.bfloat16)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
print(f"Model loaded in {time.time() - start_time:.1f}s")
|
| 69 |
+
print(f" Device: {next(self._pipeline.model.parameters()).device}")
|
| 70 |
+
|
| 71 |
+
return self._pipeline
|
| 72 |
+
|
| 73 |
+
def _load_dataset(self):
|
| 74 |
+
"""Load dataset from HuggingFace (cached after first call)"""
|
| 75 |
+
if self._dataset is None:
|
| 76 |
+
print("Loading dataset from HuggingFace...")
|
| 77 |
+
start_time = time.time()
|
| 78 |
+
|
| 79 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 80 |
+
dataset = load_dataset(
|
| 81 |
+
"evgueni-p/fbmc-features-24month",
|
| 82 |
+
split="train",
|
| 83 |
+
token=hf_token
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Convert to Polars
|
| 87 |
+
self._dataset = pl.from_arrow(dataset.data.table)
|
| 88 |
+
|
| 89 |
+
# Extract available borders
|
| 90 |
+
target_cols = [col for col in self._dataset.columns if col.startswith('target_border_')]
|
| 91 |
+
self._borders = [col.replace('target_border_', '') for col in target_cols]
|
| 92 |
+
|
| 93 |
+
print(f"Dataset loaded in {time.time() - start_time:.1f}s")
|
| 94 |
+
print(f" Shape: {self._dataset.shape}")
|
| 95 |
+
print(f" Borders: {len(self._borders)}")
|
| 96 |
+
|
| 97 |
+
return self._dataset, self._borders
|
| 98 |
+
|
| 99 |
+
def run_forecast(
|
| 100 |
+
self,
|
| 101 |
+
run_date: str,
|
| 102 |
+
borders: Optional[List[str]] = None,
|
| 103 |
+
forecast_days: int = 7,
|
| 104 |
+
context_hours: int = 512,
|
| 105 |
+
num_samples: int = 20
|
| 106 |
+
) -> Dict:
|
| 107 |
+
"""
|
| 108 |
+
Run zero-shot forecast for specified borders.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
run_date: Forecast run date (YYYY-MM-DD format)
|
| 112 |
+
borders: List of borders to forecast (None = all borders)
|
| 113 |
+
forecast_days: Forecast horizon in days (7 or 14)
|
| 114 |
+
context_hours: Historical context window
|
| 115 |
+
num_samples: Number of probabilistic samples
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
Dictionary with forecast results and metadata
|
| 119 |
+
"""
|
| 120 |
+
# Load model and dataset (cached)
|
| 121 |
+
pipeline = self._load_model()
|
| 122 |
+
df, all_borders = self._load_dataset()
|
| 123 |
+
|
| 124 |
+
# Parse run date
|
| 125 |
+
run_datetime = datetime.strptime(run_date, "%Y-%m-%d")
|
| 126 |
+
run_datetime = run_datetime.replace(hour=23, minute=0)
|
| 127 |
+
|
| 128 |
+
# Determine borders to forecast
|
| 129 |
+
forecast_borders = borders if borders else all_borders
|
| 130 |
+
prediction_hours = forecast_days * 24
|
| 131 |
+
|
| 132 |
+
print(f"\nForecast configuration:")
|
| 133 |
+
print(f" Run date: {run_datetime}")
|
| 134 |
+
print(f" Borders: {len(forecast_borders)}")
|
| 135 |
+
print(f" Forecast horizon: {forecast_days} days ({prediction_hours} hours)")
|
| 136 |
+
print(f" Context window: {context_hours} hours")
|
| 137 |
+
|
| 138 |
+
# Initialize dynamic forecast system
|
| 139 |
+
forecaster = DynamicForecast(
|
| 140 |
+
dataset=df,
|
| 141 |
+
context_hours=context_hours,
|
| 142 |
+
forecast_hours=prediction_hours
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Run forecasts for each border
|
| 146 |
+
results = {
|
| 147 |
+
'run_date': run_date,
|
| 148 |
+
'forecast_days': forecast_days,
|
| 149 |
+
'borders': {},
|
| 150 |
+
'metadata': {
|
| 151 |
+
'model': self.model_name,
|
| 152 |
+
'device': self.device,
|
| 153 |
+
'num_samples': num_samples,
|
| 154 |
+
'context_hours': context_hours
|
| 155 |
+
}
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
total_start = time.time()
|
| 159 |
+
|
| 160 |
+
for i, border in enumerate(forecast_borders, 1):
|
| 161 |
+
print(f"\n[{i}/{len(forecast_borders)}] Forecasting {border}...")
|
| 162 |
+
border_start = time.time()
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
# Extract data
|
| 166 |
+
context_data, future_data = forecaster.prepare_forecast_data(
|
| 167 |
+
run_date=run_datetime,
|
| 168 |
+
border=border
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Get target column name
|
| 172 |
+
target_col = f"target_border_{border}"
|
| 173 |
+
|
| 174 |
+
# Extract context values
|
| 175 |
+
context = context_data[target_col].values
|
| 176 |
+
|
| 177 |
+
# Run inference
|
| 178 |
+
forecast = pipeline.predict(
|
| 179 |
+
context=context,
|
| 180 |
+
prediction_length=prediction_hours,
|
| 181 |
+
num_samples=num_samples
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Calculate quantiles
|
| 185 |
+
forecast_numpy = forecast.numpy()
|
| 186 |
+
|
| 187 |
+
# Store results
|
| 188 |
+
results['borders'][border] = {
|
| 189 |
+
'median': forecast_numpy.median(axis=0).tolist(),
|
| 190 |
+
'q10': forecast_numpy.quantile(0.1, axis=0).tolist(),
|
| 191 |
+
'q90': forecast_numpy.quantile(0.9, axis=0).tolist(),
|
| 192 |
+
'inference_time_s': time.time() - border_start
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
print(f" ✓ Complete in {time.time() - border_start:.1f}s")
|
| 196 |
+
|
| 197 |
+
except Exception as e:
|
| 198 |
+
print(f" ✗ Error: {str(e)}")
|
| 199 |
+
results['borders'][border] = {'error': str(e)}
|
| 200 |
+
|
| 201 |
+
# Add summary metadata
|
| 202 |
+
results['metadata']['total_time_s'] = time.time() - total_start
|
| 203 |
+
results['metadata']['successful_borders'] = sum(
|
| 204 |
+
1 for b in results['borders'].values() if 'error' not in b
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
print(f"\n{'='*60}")
|
| 208 |
+
print(f"FORECAST COMPLETE")
|
| 209 |
+
print(f"{'='*60}")
|
| 210 |
+
print(f"Total time: {results['metadata']['total_time_s']:.1f}s")
|
| 211 |
+
print(f"Successful: {results['metadata']['successful_borders']}/{len(forecast_borders)} borders")
|
| 212 |
+
|
| 213 |
+
return results
|
| 214 |
+
|
| 215 |
+
def export_to_parquet(self, results: Dict, output_path: str):
|
| 216 |
+
"""
|
| 217 |
+
Export forecast results to parquet format.
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
results: Forecast results from run_forecast()
|
| 221 |
+
output_path: Path to save parquet file
|
| 222 |
+
"""
|
| 223 |
+
# Create forecast timestamps
|
| 224 |
+
run_datetime = datetime.strptime(results['run_date'], "%Y-%m-%d")
|
| 225 |
+
forecast_start = run_datetime + timedelta(hours=1)
|
| 226 |
+
forecast_hours = results['forecast_days'] * 24
|
| 227 |
+
|
| 228 |
+
timestamps = [
|
| 229 |
+
forecast_start + timedelta(hours=h)
|
| 230 |
+
for h in range(forecast_hours)
|
| 231 |
+
]
|
| 232 |
+
|
| 233 |
+
# Build DataFrame
|
| 234 |
+
data = {'timestamp': timestamps}
|
| 235 |
+
|
| 236 |
+
for border, forecast_data in results['borders'].items():
|
| 237 |
+
if 'error' not in forecast_data:
|
| 238 |
+
data[f'{border}_median'] = forecast_data['median']
|
| 239 |
+
data[f'{border}_q10'] = forecast_data['q10']
|
| 240 |
+
data[f'{border}_q90'] = forecast_data['q90']
|
| 241 |
+
|
| 242 |
+
df = pl.DataFrame(data)
|
| 243 |
+
df.write_parquet(output_path)
|
| 244 |
+
|
| 245 |
+
print(f"✓ Exported to: {output_path}")
|
| 246 |
+
print(f" Shape: {df.shape}")
|
| 247 |
+
|
| 248 |
+
return output_path
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Convenience function for API usage
|
| 252 |
+
def run_inference(
|
| 253 |
+
run_date: str,
|
| 254 |
+
forecast_type: str = "smoke_test",
|
| 255 |
+
borders: Optional[List[str]] = None,
|
| 256 |
+
output_dir: str = "/tmp"
|
| 257 |
+
) -> str:
|
| 258 |
+
"""
|
| 259 |
+
Run forecast and return path to results file.
|
| 260 |
+
|
| 261 |
+
Args:
|
| 262 |
+
run_date: Forecast run date (YYYY-MM-DD)
|
| 263 |
+
forecast_type: 'smoke_test' (7 days, 1 border) or 'full_14day' (14 days, all borders)
|
| 264 |
+
borders: Specific borders to forecast (None = use forecast_type defaults)
|
| 265 |
+
output_dir: Directory to save results
|
| 266 |
+
|
| 267 |
+
Returns:
|
| 268 |
+
Path to forecast results parquet file
|
| 269 |
+
"""
|
| 270 |
+
# Initialize pipeline
|
| 271 |
+
pipeline = ChronosInferencePipeline()
|
| 272 |
+
|
| 273 |
+
# Configure based on forecast type
|
| 274 |
+
if forecast_type == "smoke_test":
|
| 275 |
+
forecast_days = 7
|
| 276 |
+
if borders is None:
|
| 277 |
+
# Load just to get first border
|
| 278 |
+
_, all_borders = pipeline._load_dataset()
|
| 279 |
+
borders = [all_borders[0]]
|
| 280 |
+
else: # full_14day
|
| 281 |
+
forecast_days = 14
|
| 282 |
+
# borders = None means all borders
|
| 283 |
+
|
| 284 |
+
# Run forecast
|
| 285 |
+
results = pipeline.run_forecast(
|
| 286 |
+
run_date=run_date,
|
| 287 |
+
borders=borders,
|
| 288 |
+
forecast_days=forecast_days
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Export to parquet
|
| 292 |
+
output_filename = f"forecast_{run_date}_{forecast_type}.parquet"
|
| 293 |
+
output_path = os.path.join(output_dir, output_filename)
|
| 294 |
+
pipeline.export_to_parquet(results, output_path)
|
| 295 |
+
|
| 296 |
+
return output_path
|