Evgueni Poloukarov commited on
Commit
2c1d599
·
1 Parent(s): 7ff8b4c

fix: correct numpy median/quantile calls in inference pipeline

Browse files

Fixed critical bug where NumPy arrays were incorrectly called with
.median() and .quantile() as methods instead of np.median() and
np.quantile() functions. This was causing forecasts to return empty
results (only timestamps, no predictions).

Changes:
- Added numpy import
- Changed forecast_numpy.median() to np.median(forecast_numpy, axis=0)
- Changed forecast_numpy.quantile() to np.quantile(forecast_numpy, q, axis=0)

This fix enables the HF Space to generate actual forecast predictions.

src/forecasting/chronos_inference.py CHANGED
@@ -10,6 +10,7 @@ from typing import List, Dict, Optional
10
  from datetime import datetime, timedelta
11
  import polars as pl
12
  import pandas as pd
 
13
  import torch
14
  from datasets import load_dataset
15
  from chronos import ChronosPipeline
@@ -186,9 +187,9 @@ class ChronosInferencePipeline:
186
 
187
  # Store results
188
  results['borders'][border] = {
189
- 'median': forecast_numpy.median(axis=0).tolist(),
190
- 'q10': forecast_numpy.quantile(0.1, axis=0).tolist(),
191
- 'q90': forecast_numpy.quantile(0.9, axis=0).tolist(),
192
  'inference_time_s': time.time() - border_start
193
  }
194
 
 
10
  from datetime import datetime, timedelta
11
  import polars as pl
12
  import pandas as pd
13
+ import numpy as np
14
  import torch
15
  from datasets import load_dataset
16
  from chronos import ChronosPipeline
 
187
 
188
  # Store results
189
  results['borders'][border] = {
190
+ 'median': np.median(forecast_numpy, axis=0).tolist(),
191
+ 'q10': np.quantile(forecast_numpy, 0.1, axis=0).tolist(),
192
+ 'q90': np.quantile(forecast_numpy, 0.9, axis=0).tolist(),
193
  'inference_time_s': time.time() - border_start
194
  }
195