#!/usr/bin/env python3 """ Dynamic Forecast Module v1.8.0 - Context Window (47 Days / 1.5 Months) Time-aware data extraction for forecasting with run-date awareness. Purpose: Prevent data leakage by extracting data AS IT WAS KNOWN at run time. Key Concepts: - run_date: When the forecast is made (e.g., "2025-09-30 23:00") - forecast_horizon: Always 14 days (D+1 to D+14, fixed at 336 hours) - context_window: Historical data before run_date (1,125 hours = 47 days / 1.5 months, fits A100-80GB) - future_covariates: ALL 2,514 features (leveraging Chronos-2 past-only masking) * 603 full-horizon (known future) * 12 partial D+1 (masked D+2-D+14) * 1,899 historical (masked as past-only covariates) Chronos-2 Past-Only Covariate Masking: - Historical features have NaN future values → Chronos-2 sets mask=0 - Model learns cross-feature correlations from historical context - Attention mechanism uses dimensional structure even when values masked - Enables learning of CNEC/volatility patterns without future knowledge """ from typing import Dict, Tuple, Optional import pandas as pd import polars as pl import numpy as np from datetime import datetime, timedelta from src.forecasting.feature_availability import FeatureAvailability class DynamicForecast: """ Handles time-aware data extraction for forecasting. Ensures no data leakage by only using data available at run_date. """ def __init__( self, dataset: pl.DataFrame, context_hours: int = 1125, # 1,125 hours = 46.9 days (1.5 months, fits A100-80GB) forecast_hours: int = 336 # Fixed at 14 days ): """ Initialize dynamic forecast handler. Args: dataset: Polars DataFrame with all features context_hours: Hours of historical context (default 1440 = 60 days) forecast_hours: Forecast horizon in hours (default 336 = 14 days) """ self.dataset = dataset self.context_hours = context_hours self.forecast_hours = forecast_hours # Categorize features on initialization self.categories = FeatureAvailability.categorize_features(dataset.columns) # Validate categorization is_valid, warnings = FeatureAvailability.validate_categorization( self.categories, verbose=False ) if not is_valid: print("[!] WARNING: Feature categorization issues detected") for w in warnings: print(f" - {w}") def prepare_forecast_data( self, run_date: datetime, border: str ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Prepare context and future data for a single border forecast. Args: run_date: When the forecast is made (all data before this is historical) border: Border to forecast (e.g., "AT_CZ") Returns: Tuple of (context_data, future_data): - context_data: Historical features + target (pandas DataFrame) - future_data: Future covariates only (pandas DataFrame) """ # Step 1: Extract historical context context_data = self._extract_context(run_date, border) # Step 2: Extract future covariates future_data = self._extract_future_covariates(run_date, border) # Step 3: Apply availability masking future_data = self._apply_masking(future_data, run_date) # Step 4: Align dtypes between context and future # Chronos-2 requires matching dtypes for columns that appear in both DataFrames # After masking, int columns may become float due to NaN values # Solution: Convert ALL numeric columns to float64 in both DataFrames import pandas as pd common_cols = set(context_data.columns) & set(future_data.columns) for col in common_cols: if col in ['timestamp', 'border']: continue # Skip non-numeric columns # Convert both context and future to float64 for consistency # This ensures Chronos-2's validation passes (requires matching dtypes) # Use pd.to_numeric() which handles NaN gracefully (unlike .astype()) context_data[col] = pd.to_numeric(context_data[col], errors='coerce').astype('float64') future_data[col] = pd.to_numeric(future_data[col], errors='coerce').astype('float64') return context_data, future_data def _extract_context( self, run_date: datetime, border: str ) -> pd.DataFrame: """ Extract historical context data. Context includes: - All features (full+partial+historical) up to run_date - Target values up to run_date Args: run_date: Cutoff timestamp border: Border identifier Returns: Pandas DataFrame with columns: timestamp, border, target, all_features """ # Calculate context window context_start = run_date - timedelta(hours=self.context_hours) # Filter data context_df = self.dataset.filter( (pl.col('timestamp') >= context_start) & (pl.col('timestamp') < run_date) ) # Select target column for this border target_col = f'target_border_{border}' # All features (we'll use all for context, Chronos-2 handles it) all_features = ( self.categories['full_horizon_d14'] + self.categories['partial_d1'] + self.categories['historical'] ) # Build context DataFrame context_cols = ['timestamp', target_col] + all_features context_data = context_df.select(context_cols).to_pandas() # Add border identifier and rename target context_data['border'] = border context_data = context_data.rename(columns={target_col: 'target'}) # Reorder: timestamp, border, target, features context_data = context_data[['timestamp', 'border', 'target'] + all_features] return context_data def _extract_future_covariates( self, run_date: datetime, border: str ) -> pd.DataFrame: """ Extract future covariate data for D+1 to D+14. Future covariates include ALL 2,514 features using Chronos-2's past-only masking: - Full-horizon D+14: 603 features (known future values) - Partial D+1: 12 features (load forecasts, masked D+2-D+14) - Historical: 1,899 features (MASKED as past-only covariates) Past-only covariates leverage Chronos-2's mask-based attention: - Future values are NaN (unknown) - Chronos-2 sets mask=0 for these dimensions - Model learns cross-feature correlations from historical context - Attention mechanism uses structure even when future values masked Args: run_date: Forecast run timestamp border: Border identifier Returns: Pandas DataFrame with columns: timestamp, border, future_features """ # Calculate future window # IMPORTANT: Chronos-2 predict_df() expects future_df to start at the LAST context timestamp, # not the first forecast timestamp. See dataset.py:549 assertion. forecast_start = run_date # Start at last context timestamp forecast_end = forecast_start + timedelta(hours=self.forecast_hours - 1) # Filter data future_df = self.dataset.filter( (pl.col('timestamp') >= forecast_start) & (pl.col('timestamp') <= forecast_end) ) # Include ALL features (3,043 total) to leverage past-only covariate masking # Historical features will be NaN in future → Chronos-2 masks them automatically future_features = ( self.categories['full_horizon_d14'] + # 603 known-future self.categories['partial_d1'] + # 12 partial self.categories['historical'] # ~2,428 past-only (MASKED!) ) # Build future DataFrame future_cols = ['timestamp'] + future_features future_data = future_df.select(future_cols).to_pandas() # Add border identifier future_data['border'] = border # Reorder: timestamp, border, features future_data = future_data[['timestamp', 'border'] + future_features] return future_data def _apply_masking( self, future_data: pd.DataFrame, run_date: datetime ) -> pd.DataFrame: """ Apply availability masking for partial features. Masking: - Load forecasts (12 features): Available D+1 only, masked D+2-D+14 - LTA (40 features): Forward-fill from last known value Args: future_data: DataFrame with future covariates run_date: Forecast run timestamp Returns: DataFrame with masking applied """ # Calculate D+1 cutoff (24 hours after run_date) d1_cutoff = run_date + timedelta(hours=24) # Mask load forecasts for D+2 onwards for col in self.categories['partial_d1']: # Set to NaN (or 0) for hours beyond D+1 mask = future_data['timestamp'] > d1_cutoff future_data.loc[mask, col] = np.nan # Chronos-2 handles NaN # Forward-fill LTA values # Note: LTA values in dataset should already be forward-filled during # feature engineering, but we ensure consistency here lta_cols = [c for c in self.categories['full_horizon_d14'] if c.startswith('lta_')] # LTA is constant across forecast horizon (use first value) if len(lta_cols) > 0 and len(future_data) > 0: first_values = future_data[lta_cols].iloc[0] for col in lta_cols: future_data[col] = first_values[col] return future_data def validate_no_leakage( self, context_data: pd.DataFrame, future_data: pd.DataFrame, run_date: datetime ) -> Tuple[bool, list]: """ Validate that no data leakage exists. Checks: 1. All context timestamps < run_date 2. All future timestamps >= run_date + 1 hour 3. No overlap between context and future 4. Future data only contains future covariates Args: context_data: Historical context future_data: Future covariates run_date: Forecast run timestamp Returns: Tuple of (is_valid, errors) """ errors = [] # Check 1: Context timestamps if context_data['timestamp'].max() >= run_date: errors.append( f"Context data leaks into future: max timestamp " f"{context_data['timestamp'].max()} >= run_date {run_date}" ) # Check 2: Future timestamps forecast_start = run_date + timedelta(hours=1) if future_data['timestamp'].min() < forecast_start: errors.append( f"Future data includes historical: min timestamp " f"{future_data['timestamp'].min()} < forecast_start {forecast_start}" ) # Check 3: No overlap if (context_data['timestamp'].max() >= future_data['timestamp'].min()): errors.append("Overlap detected between context and future data") # Check 4: Future columns future_features = set( self.categories['full_horizon_d14'] + self.categories['partial_d1'] ) future_cols = set(future_data.columns) - {'timestamp', 'border'} if not future_cols.issubset(future_features): extra_cols = future_cols - future_features errors.append( f"Future data contains non-future features: {extra_cols}" ) is_valid = len(errors) == 0 return is_valid, errors def get_feature_summary(self) -> Dict[str, int]: """ Get summary of feature categorization. Returns: Dictionary with feature counts by category """ return { 'full_horizon_d14': len(self.categories['full_horizon_d14']), 'partial_d1': len(self.categories['partial_d1']), 'historical': len(self.categories['historical']), 'total': sum(len(v) for v in self.categories.values()) }