Spaces:
Running
Running
Upload nltk_utils.py
Browse files- nltk_utils.py +24 -0
nltk_utils.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import Libraries
|
| 2 |
+
import nltk
|
| 3 |
+
from nltk.tokenize import word_tokenize
|
| 4 |
+
nltk.download('punkt')
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
+
from nltk.stem import SnowballStemmer
|
| 7 |
+
stemmer= SnowballStemmer(language= 'english')
|
| 8 |
+
from nltk.corpus import stopwords
|
| 9 |
+
nltk.download('stopwords')
|
| 10 |
+
|
| 11 |
+
# Tokenize text i.e make all text be in a list format e.g "I am sick" = ['i', 'am', 'sick']
|
| 12 |
+
def tokenize(text):
|
| 13 |
+
return [stemmer.stem(token) for token in word_tokenize(text)]
|
| 14 |
+
|
| 15 |
+
# Create stopwords to reduce noise in data
|
| 16 |
+
english_stopwords= stopwords.words('english')
|
| 17 |
+
|
| 18 |
+
# Create a vectosizer to learn all words in order to convert them into numbers
|
| 19 |
+
def vectorizer():
|
| 20 |
+
vectorizer= TfidfVectorizer(tokenizer=tokenize,
|
| 21 |
+
stop_words=english_stopwords,
|
| 22 |
+
)
|
| 23 |
+
return vectorizer
|
| 24 |
+
|