init project
Browse files
app.py
CHANGED
|
@@ -36,11 +36,14 @@ import matplotlib.pyplot as pl
|
|
| 36 |
|
| 37 |
from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
| 38 |
from modules.pe3r.models import Models
|
|
|
|
|
|
|
| 39 |
|
| 40 |
silent = True
|
| 41 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 42 |
pe3r = Models(device)
|
| 43 |
|
|
|
|
| 44 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
| 45 |
cam_color=None, as_pointcloud=False,
|
| 46 |
transparent_cams=False, silent=False):
|
|
@@ -474,7 +477,6 @@ def get_reconstructed_scene(outdir, pe3r, device, silent, filelist, schedule, ni
|
|
| 474 |
loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
|
| 475 |
|
| 476 |
try:
|
| 477 |
-
import torchvision.transforms as tvf
|
| 478 |
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
| 479 |
for i in range(len(imgs)):
|
| 480 |
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
|
|
|
|
| 36 |
|
| 37 |
from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
| 38 |
from modules.pe3r.models import Models
|
| 39 |
+
import torchvision.transforms as tvf
|
| 40 |
+
|
| 41 |
|
| 42 |
silent = True
|
| 43 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 44 |
pe3r = Models(device)
|
| 45 |
|
| 46 |
+
|
| 47 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
| 48 |
cam_color=None, as_pointcloud=False,
|
| 49 |
transparent_cams=False, silent=False):
|
|
|
|
| 477 |
loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
|
| 478 |
|
| 479 |
try:
|
|
|
|
| 480 |
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
| 481 |
for i in range(len(imgs)):
|
| 482 |
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
|