Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """Determine and return the random seed to use for model generation. | |
| - MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max). | |
| - This function is typically used to ensure reproducibility or to introduce randomness in model generation. | |
| Args: | |
| randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is. | |
| seed (int): The seed value to use if randomize_seed is False. | |
| Returns: | |
| int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument. | |
| """ | |
| rng = np.random.default_rng() | |
| return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed | |
| def infer( | |
| prompt: str, | |
| seed: int, | |
| width: int = 1024, | |
| height: int = 1024, | |
| num_inference_steps: int = 4, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
| ) -> PIL.Image.Image: | |
| """Generate an image from a text prompt using the FLUX.1 [schnell] model. | |
| - Prompts must be in English. Other languages are not currently supported. | |
| - Prompts are limited to a maximum of 77 tokens, due to the CLIP tokenizer constraint. | |
| Args: | |
| prompt: A text prompt in English used to guide the image generation. Limited to 77 tokens. | |
| seed: The seed used for deterministic random number generation. | |
| width: Width of the generated image in pixels. Defaults to 1024. | |
| height: Height of the generated image in pixels. Defaults to 1024. | |
| num_inference_steps: Number of inference steps to perform. A higher value may improve image quality. Defaults to 4. | |
| progress: (Internal) Used to display progress in the UI; should not be modified by the user. | |
| Returns: | |
| A PIL.Image.Image object representing the generated image. | |
| """ | |
| generator = torch.Generator().manual_seed(seed) | |
| return pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0, | |
| ).images[0] | |
| def run_example(prompt: str) -> tuple[PIL.Image.Image, int]: | |
| return infer(prompt, seed=42) | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cat holding a sign that says hello world", | |
| "an anime illustration of a wiener schnitzel", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("""# FLUX.1 [schnell] | |
| 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
| [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| submit_btn=True, | |
| ) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=run_example, | |
| inputs=prompt, | |
| outputs=result, | |
| ) | |
| prompt.submit( | |
| fn=get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=seed, | |
| ).then( | |
| fn=infer, | |
| inputs=[prompt, seed, width, height, num_inference_steps], | |
| outputs=result, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(mcp_server=True) | |