Spaces:
Runtime error
Runtime error
Add files
Browse files- app.py +223 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import io
|
| 8 |
+
import os
|
| 9 |
+
import pathlib
|
| 10 |
+
import tarfile
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import numpy as np
|
| 14 |
+
import PIL.Image
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
|
| 17 |
+
TITLE = 'TADNE (This Anime Does Not Exist) Image Selector'
|
| 18 |
+
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
|
| 19 |
+
|
| 20 |
+
You can view images generated by the TADNE model with seed 0-99999.
|
| 21 |
+
You can filter images based on predictions by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) model.
|
| 22 |
+
The original images are 512x512 in size, but here they are resized to 128x128.
|
| 23 |
+
|
| 24 |
+
Known issues:
|
| 25 |
+
- The `Seed` table in the output doesn't refresh properly in gradio 2.9.1. https://github.com/gradio-app/gradio/issues/921
|
| 26 |
+
'''
|
| 27 |
+
ARTICLE = None
|
| 28 |
+
|
| 29 |
+
TOKEN = os.environ['TOKEN']
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def parse_args() -> argparse.Namespace:
|
| 33 |
+
parser = argparse.ArgumentParser()
|
| 34 |
+
parser.add_argument('--theme', type=str)
|
| 35 |
+
parser.add_argument('--live', action='store_true')
|
| 36 |
+
parser.add_argument('--share', action='store_true')
|
| 37 |
+
parser.add_argument('--port', type=int)
|
| 38 |
+
parser.add_argument('--disable-queue',
|
| 39 |
+
dest='enable_queue',
|
| 40 |
+
action='store_false')
|
| 41 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
| 42 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
| 43 |
+
return parser.parse_args()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def download_image_tarball(size: int, dirname: str) -> pathlib.Path:
|
| 47 |
+
path = hf_hub_download('hysts/TADNE-sample-images',
|
| 48 |
+
f'{size}/{dirname}.tar',
|
| 49 |
+
repo_type='dataset',
|
| 50 |
+
use_auth_token=TOKEN)
|
| 51 |
+
return path
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def load_deepdanbooru_tag_dict() -> dict[str, int]:
|
| 55 |
+
path = hf_hub_download('hysts/DeepDanbooru',
|
| 56 |
+
'tags.txt',
|
| 57 |
+
use_auth_token=TOKEN)
|
| 58 |
+
with open(path) as f:
|
| 59 |
+
tags = [line.strip() for line in f.readlines()]
|
| 60 |
+
return {tag: i for i, tag in enumerate(tags)}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
|
| 64 |
+
path = hf_hub_download('hysts/TADNE-sample-images',
|
| 65 |
+
f'prediction_results/deepdanbooru/{dirname}.npy',
|
| 66 |
+
repo_type='dataset',
|
| 67 |
+
use_auth_token=TOKEN)
|
| 68 |
+
return np.load(path)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def run(
|
| 72 |
+
general_tags: list[str],
|
| 73 |
+
hair_color_tags: list[str],
|
| 74 |
+
hair_style_tags: list[str],
|
| 75 |
+
image_color_tags: list[str],
|
| 76 |
+
score_threshold: float,
|
| 77 |
+
start_index: int,
|
| 78 |
+
nrows: int,
|
| 79 |
+
ncols: int,
|
| 80 |
+
image_size: int,
|
| 81 |
+
min_seed: int,
|
| 82 |
+
max_seed: int,
|
| 83 |
+
dirname: str,
|
| 84 |
+
tarball_path: pathlib.Path,
|
| 85 |
+
deepdanbooru_tag_dict: dict[str, int],
|
| 86 |
+
deepdanbooru_predictions: np.ndarray,
|
| 87 |
+
) -> np.ndarray:
|
| 88 |
+
hair_color_tags = [f'{color}_hair' for color in hair_color_tags]
|
| 89 |
+
|
| 90 |
+
tags = general_tags + hair_color_tags + hair_style_tags + image_color_tags
|
| 91 |
+
tag_indices = [deepdanbooru_tag_dict[tag] for tag in tags]
|
| 92 |
+
|
| 93 |
+
conditions = deepdanbooru_predictions[:, tag_indices] > score_threshold
|
| 94 |
+
image_indices = np.arange(len(deepdanbooru_predictions))
|
| 95 |
+
image_indices = image_indices[conditions.all(axis=1)]
|
| 96 |
+
|
| 97 |
+
start_index = int(start_index)
|
| 98 |
+
num = nrows * ncols
|
| 99 |
+
seeds = []
|
| 100 |
+
images = []
|
| 101 |
+
dummy = np.ones((image_size, image_size, 3), dtype=np.uint8) * 255
|
| 102 |
+
with tarfile.TarFile(tarball_path) as tar_file:
|
| 103 |
+
for index in range(start_index, start_index + num):
|
| 104 |
+
if index >= len(image_indices):
|
| 105 |
+
seeds.append(-1)
|
| 106 |
+
images.append(dummy)
|
| 107 |
+
continue
|
| 108 |
+
image_index = image_indices[index]
|
| 109 |
+
seeds.append(image_index)
|
| 110 |
+
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg')
|
| 111 |
+
with tar_file.extractfile(member) as f:
|
| 112 |
+
data = io.BytesIO(f.read())
|
| 113 |
+
image = PIL.Image.open(data)
|
| 114 |
+
image = np.asarray(image)
|
| 115 |
+
images.append(image)
|
| 116 |
+
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size,
|
| 117 |
+
3).transpose(0, 2, 1, 3, 4).reshape(
|
| 118 |
+
nrows * image_size,
|
| 119 |
+
ncols * image_size, 3)
|
| 120 |
+
seeds = np.asarray(seeds).reshape(nrows, ncols)
|
| 121 |
+
|
| 122 |
+
return len(image_indices), res, seeds
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def main():
|
| 126 |
+
gr.close_all()
|
| 127 |
+
|
| 128 |
+
args = parse_args()
|
| 129 |
+
|
| 130 |
+
image_size = 128
|
| 131 |
+
min_seed = 0
|
| 132 |
+
max_seed = 99999
|
| 133 |
+
dirname = '0-99999'
|
| 134 |
+
tarball_path = download_image_tarball(image_size, dirname)
|
| 135 |
+
|
| 136 |
+
deepdanbooru_tag_dict = load_deepdanbooru_tag_dict()
|
| 137 |
+
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
|
| 138 |
+
|
| 139 |
+
func = functools.partial(
|
| 140 |
+
run,
|
| 141 |
+
image_size=image_size,
|
| 142 |
+
min_seed=min_seed,
|
| 143 |
+
max_seed=max_seed,
|
| 144 |
+
dirname=dirname,
|
| 145 |
+
tarball_path=tarball_path,
|
| 146 |
+
deepdanbooru_tag_dict=deepdanbooru_tag_dict,
|
| 147 |
+
deepdanbooru_predictions=deepdanbooru_predictions,
|
| 148 |
+
)
|
| 149 |
+
func = functools.update_wrapper(func, run)
|
| 150 |
+
|
| 151 |
+
gr.Interface(
|
| 152 |
+
func,
|
| 153 |
+
[
|
| 154 |
+
gr.inputs.CheckboxGroup([
|
| 155 |
+
'1girl',
|
| 156 |
+
'1boy',
|
| 157 |
+
'multiple_girls',
|
| 158 |
+
'multiple_boys',
|
| 159 |
+
],
|
| 160 |
+
label='General'),
|
| 161 |
+
gr.inputs.CheckboxGroup([
|
| 162 |
+
'aqua',
|
| 163 |
+
'black',
|
| 164 |
+
'blonde',
|
| 165 |
+
'blue',
|
| 166 |
+
'brown',
|
| 167 |
+
'green',
|
| 168 |
+
'grey',
|
| 169 |
+
'orange',
|
| 170 |
+
'pink',
|
| 171 |
+
'purple',
|
| 172 |
+
'red',
|
| 173 |
+
'silver',
|
| 174 |
+
'white',
|
| 175 |
+
],
|
| 176 |
+
label='Hair Color'),
|
| 177 |
+
gr.inputs.CheckboxGroup([
|
| 178 |
+
'bangs',
|
| 179 |
+
'curly_hair',
|
| 180 |
+
'long_hair',
|
| 181 |
+
'medium_hair',
|
| 182 |
+
'messy_hair',
|
| 183 |
+
'short_hair',
|
| 184 |
+
'straight_hair',
|
| 185 |
+
'twintails',
|
| 186 |
+
],
|
| 187 |
+
label='Hair Style'),
|
| 188 |
+
gr.inputs.CheckboxGroup([
|
| 189 |
+
'greyscale',
|
| 190 |
+
'monochrome',
|
| 191 |
+
],
|
| 192 |
+
label='Image Color'),
|
| 193 |
+
gr.inputs.Slider(0,
|
| 194 |
+
1,
|
| 195 |
+
step=0.1,
|
| 196 |
+
default=0.5,
|
| 197 |
+
label='DeepDanbooru Score Threshold'),
|
| 198 |
+
gr.inputs.Number(default=0, label='Start Index'),
|
| 199 |
+
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'),
|
| 200 |
+
gr.inputs.Slider(
|
| 201 |
+
1, 10, step=1, default=5, label='Number of Columns'),
|
| 202 |
+
],
|
| 203 |
+
[
|
| 204 |
+
gr.outputs.Textbox(type='number', label='Number of Found Images'),
|
| 205 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
| 206 |
+
gr.outputs.Dataframe(type='numpy', label='Seed'),
|
| 207 |
+
],
|
| 208 |
+
title=TITLE,
|
| 209 |
+
description=DESCRIPTION,
|
| 210 |
+
article=ARTICLE,
|
| 211 |
+
theme=args.theme,
|
| 212 |
+
allow_screenshot=args.allow_screenshot,
|
| 213 |
+
allow_flagging=args.allow_flagging,
|
| 214 |
+
live=args.live,
|
| 215 |
+
).launch(
|
| 216 |
+
enable_queue=args.enable_queue,
|
| 217 |
+
server_port=args.port,
|
| 218 |
+
share=args.share,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
if __name__ == '__main__':
|
| 223 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.22.3
|
| 2 |
+
Pillow==9.0.1
|