Update
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🐢
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.34.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -22,12 +22,7 @@ sys.path.insert(0, 'bizarre-pose-estimator')
|
|
| 22 |
|
| 23 |
from _util.twodee_v0 import I as ImageWrapper
|
| 24 |
|
| 25 |
-
|
| 26 |
-
DESCRIPTION = 'This is an unofficial demo for https://github.com/ShuhongChen/bizarre-pose-estimator.'
|
| 27 |
-
|
| 28 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 29 |
-
MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
|
| 30 |
-
MODEL_FILENAME = 'segmenter.pth'
|
| 31 |
|
| 32 |
|
| 33 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
|
@@ -36,8 +31,7 @@ def load_sample_image_paths() -> list[pathlib.Path]:
|
|
| 36 |
dataset_repo = 'hysts/sample-images-TADNE'
|
| 37 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 38 |
'images.tar.gz',
|
| 39 |
-
repo_type='dataset'
|
| 40 |
-
use_auth_token=HF_TOKEN)
|
| 41 |
with tarfile.open(path) as f:
|
| 42 |
f.extractall()
|
| 43 |
return sorted(image_dir.glob('*'))
|
|
@@ -45,9 +39,8 @@ def load_sample_image_paths() -> list[pathlib.Path]:
|
|
| 45 |
|
| 46 |
def load_model(
|
| 47 |
device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
|
| 48 |
-
path = huggingface_hub.hf_hub_download(
|
| 49 |
-
|
| 50 |
-
use_auth_token=HF_TOKEN)
|
| 51 |
ckpt = torch.load(path)
|
| 52 |
|
| 53 |
model = torchvision.models.segmentation.deeplabv3_resnet101()
|
|
@@ -114,24 +107,31 @@ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
| 114 |
model, final_head = load_model(device)
|
| 115 |
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
gr.
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
gr.
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
from _util.twodee_v0 import I as ImageWrapper
|
| 24 |
|
| 25 |
+
DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (segmenter)](https://github.com/ShuhongChen/bizarre-pose-estimator)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
|
|
|
| 31 |
dataset_repo = 'hysts/sample-images-TADNE'
|
| 32 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 33 |
'images.tar.gz',
|
| 34 |
+
repo_type='dataset')
|
|
|
|
| 35 |
with tarfile.open(path) as f:
|
| 36 |
f.extractall()
|
| 37 |
return sorted(image_dir.glob('*'))
|
|
|
|
| 39 |
|
| 40 |
def load_model(
|
| 41 |
device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
|
| 42 |
+
path = huggingface_hub.hf_hub_download(
|
| 43 |
+
'public-data/bizarre-pose-estimator-models', 'segmenter.pth')
|
|
|
|
| 44 |
ckpt = torch.load(path)
|
| 45 |
|
| 46 |
model = torchvision.models.segmentation.deeplabv3_resnet101()
|
|
|
|
| 107 |
model, final_head = load_model(device)
|
| 108 |
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 109 |
|
| 110 |
+
fn = functools.partial(predict,
|
| 111 |
+
transform=transform,
|
| 112 |
+
device=device,
|
| 113 |
+
model=model,
|
| 114 |
+
final_head=final_head)
|
| 115 |
+
|
| 116 |
+
with gr.Blocks(css='style.css') as demo:
|
| 117 |
+
gr.Markdown(DESCRIPTION)
|
| 118 |
+
with gr.Row():
|
| 119 |
+
with gr.Column():
|
| 120 |
+
image = gr.Image(label='Input', type='pil')
|
| 121 |
+
threshold = gr.Slider(label='Score Threshold',
|
| 122 |
+
minimum=0,
|
| 123 |
+
maximum=1,
|
| 124 |
+
step=0.05,
|
| 125 |
+
value=0.5)
|
| 126 |
+
run_button = gr.Button('Run')
|
| 127 |
+
with gr.Column():
|
| 128 |
+
result = gr.Image(label='Masked')
|
| 129 |
+
|
| 130 |
+
inputs = [image, threshold]
|
| 131 |
+
gr.Examples(examples=examples,
|
| 132 |
+
inputs=inputs,
|
| 133 |
+
outputs=result,
|
| 134 |
+
fn=fn,
|
| 135 |
+
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
| 136 |
+
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
|
| 137 |
+
demo.queue(max_size=15).launch()
|
style.css
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|