File size: 7,495 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
title: LangGraph Multi-Agent MCTS Demo
emoji: 🌳
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
tags:
  - multi-agent
  - mcts
  - reasoning
  - langgraph
  - ai-agents
  - wandb
  - experiment-tracking
short_description: Multi-agent reasoning framework with Monte Carlo Tree Search
---

# LangGraph Multi-Agent MCTS Framework

**Production Demo with Trained Neural Models** - Experience real trained meta-controllers for intelligent agent routing

## What This Demo Shows

This interactive demo showcases trained neural meta-controllers that dynamically route queries to specialized agents:

### πŸ€– Trained Meta-Controllers

1. **RNN Meta-Controller**
   - GRU-based recurrent neural network
   - Learns sequential patterns in agent performance
   - Fast inference (~2ms latency)
   - Trained on 1000+ synthetic routing examples

2. **BERT Meta-Controller with LoRA**
   - Transformer-based text understanding
   - Parameter-efficient fine-tuning with LoRA adapters
   - Context-aware routing decisions
   - Better generalization to unseen query patterns

### 🧠 Three Specialized Agents

1. **HRM (Hierarchical Reasoning Module)**
   - Best for: Complex decomposition, multi-level problems
   - Technique: Hierarchical planning with adaptive computation

2. **TRM (Tree Reasoning Module)**
   - Best for: Iterative refinement, comparison tasks
   - Technique: Recursive refinement with convergence detection

3. **MCTS (Monte Carlo Tree Search)**
   - Best for: Optimization, strategic planning
   - Technique: UCB1 exploration with value backpropagation

### πŸ“Š Key Features

- **Real Trained Models**: Production-ready neural meta-controllers
- **Intelligent Routing**: Models learn optimal agent selection patterns
- **Routing Visualization**: See confidence scores and probability distributions
- **Feature Engineering**: Demonstrates query β†’ features β†’ routing pipeline
- **Performance Metrics**: Track execution time and routing accuracy

## How to Use

1. **Enter a Query**: Type your question or select an example
2. **Select Controller**: Choose RNN (fast) or BERT (context-aware)
3. **Process Query**: Click "πŸš€ Process Query"
4. **Review Results**:
   - See which agent the controller selected
   - View routing confidence and probabilities
   - Examine features used for decision-making
   - Check agent execution details

## Weights & Biases Integration

Track your experiments with **Weights & Biases** for:
- πŸ“ˆ **Metrics Dashboard**: Visualize consensus scores, execution times, agent performance
- πŸ”„ **Run Comparison**: Compare different configurations side-by-side
- πŸ“Š **Experiment History**: Track all your queries and results
- 🌳 **MCTS Visualization**: Log tree exploration patterns

### Setting Up W&B

1. **Get API Key**: Sign up at [wandb.ai](https://wandb.ai) and get your API key
2. **Configure Space Secret** (if deploying your own):
   - Go to Space Settings β†’ Repository secrets
   - Add: `WANDB_API_KEY` = your API key
3. **Enable in UI**:
   - Expand "Weights & Biases Tracking" accordion
   - Check "Enable W&B Tracking"
   - Set project name (optional)
   - Set run name (optional, auto-generated if empty)
4. **View Results**: After processing, click the W&B run URL to see your dashboard

### Logged Metrics

- **Per Agent**: Confidence, execution time, response length, reasoning steps
- **MCTS**: Best value, visits, tree depth, top actions with UCB1 scores
- **Consensus**: Score, level (high/medium/low), number of agents
- **Performance**: Total processing time
- **Artifacts**: Full JSON results, tree visualizations

## Example Queries

- "What are the key factors to consider when choosing between microservices and monolithic architecture?"
- "How can we optimize a Python application that processes 10GB of log files daily?"
- "Should we use SQL or NoSQL database for a social media application with 1M users?"
- "How to design a fault-tolerant message queue system?"

## Technical Details

### Architecture

```
Query Input
    β”‚
    β”œβ”€β†’ HRM Agent (Hierarchical Decomposition)
    β”‚      β”œβ”€ Component Analysis
    β”‚      └─ Structured Synthesis
    β”‚
    β”œβ”€β†’ TRM Agent (Iterative Refinement)
    β”‚      β”œβ”€ Initial Response
    β”‚      β”œβ”€ Clarity Enhancement
    β”‚      └─ Validation Check
    β”‚
    └─→ MCTS Engine (Strategic Search)
           β”œβ”€ Selection (UCB1)
           β”œβ”€ Expansion
           β”œβ”€ Simulation
           └─ Backpropagation
                    β”‚
                    β–Ό
           Consensus Scoring
                    β”‚
                    β–Ό
           Final Synthesized Response
```

### MCTS Algorithm

The Monte Carlo Tree Search implementation uses:

- **UCB1 Selection**: `Q(s,a) + C * sqrt(ln(N(s)) / N(s,a))`
- **Progressive Widening**: Controls branching factor
- **Domain-Aware Actions**: Contextual decision options
- **Value Backpropagation**: Updates entire path statistics

### Consensus Calculation

```
consensus = average_confidence * agreement_factor
agreement_factor = max(0, 1 - std_deviation * 2)
```

High consensus (>70%) indicates agents agree on approach.
Low consensus (<40%) suggests uncertainty or conflicting strategies.

## Demo Scope

This demonstration focuses on **meta-controller training and routing**:

- βœ… **Real Trained Models**: Production RNN and BERT controllers
- βœ… **Actual Model Loading**: PyTorch and HuggingFace Transformers
- βœ… **Feature Engineering**: Query analysis β†’ feature vectors
- βœ… **Routing Visualization**: See controller decision-making
- ⚠️ **Simplified Agents**: Agent responses are mocked for demo purposes
- ⚠️ **No Live LLM Calls**: Agents don't call actual LLMs (to reduce latency/cost)

## Full Production Framework

The complete repository includes all production features:

- βœ… **Neural Meta-Controllers**: RNN and BERT with LoRA (deployed here!)
- βœ… **Agent Implementations**: Full HRM, TRM, and MCTS with PyTorch
- βœ… **Training Pipeline**: Data generation, training, evaluation
- βœ… **LLM Integration**: OpenAI, Anthropic, LM Studio support
- βœ… **RAG Systems**: ChromaDB, FAISS, Pinecone vector stores
- βœ… **Observability**: OpenTelemetry tracing, Prometheus metrics
- βœ… **Storage**: S3 artifact storage, experiment tracking
- βœ… **CI/CD**: Automated testing, security scanning, deployment

**GitHub Repository**: [ianshank/langgraph_multi_agent_mcts](https://github.com/ianshank/langgraph_multi_agent_mcts)

## Technical Stack

- **Python**: 3.11+
- **UI**: Gradio 4.x
- **ML Frameworks**: PyTorch 2.1+, Transformers, PEFT (LoRA)
- **Models**: GRU-based RNN, BERT-mini with LoRA adapters
- **Architecture**: Neural meta-controller + multi-agent system
- **Experiment Tracking**: Weights & Biases (optional)
- **Numerical**: NumPy

## Research Applications

This framework demonstrates concepts applicable to:

- Complex decision-making systems
- AI-assisted software architecture decisions
- Multi-perspective problem analysis
- Strategic planning with uncertainty

## Citation

If you use this framework in research, please cite:

```bibtex
@software{langgraph_mcts_2024,
  title={LangGraph Multi-Agent MCTS Framework},
  author={Your Name},
  year={2024},
  url={https://github.com/ianshank/langgraph_multi_agent_mcts}
}
```

## License

MIT License - See repository for details.

---

**Built with** LangGraph, Gradio, and Python | **Demo Version**: 1.0.0