ivxivx commited on
Commit
798e4a0
·
unverified ·
1 Parent(s): 822c123

chore: remove st

Browse files
Files changed (1) hide show
  1. app.py +1 -47
app.py CHANGED
@@ -2,8 +2,6 @@
2
  import os
3
  from dotenv import load_dotenv
4
 
5
- st.set_page_config(page_title="Chat", page_icon=":page_facing_up:")
6
-
7
  load_dotenv()
8
 
9
  from huggingface_hub import login
@@ -13,58 +11,14 @@ login(token=os.getenv("HUGGINGFACEHUB_API_KEY"))
13
  from transformers import AutoModelForCausalLM, AutoTokenizer
14
  import gradio as gr
15
 
 
16
  # model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" # 15G
17
  model_name="meta-llama/Llama-3.2-3B-Instruct" # 6.5G
18
 
19
- # #
20
- # # HuggingFaceTB/SmolLM2-135M-Instruct
21
- # # deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
22
- # checkpoint = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
23
- # checkpoint = "meta-llama/Llama-3.2-3B-Instruct" # 6.5G
24
  device = "mps" # "cuda" or "cpu"
25
  tokenizer = AutoTokenizer.from_pretrained(model_name)
26
  model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
27
 
28
- # def predict(message, history):
29
- # history.append({"role": "user", "content": message})
30
- # input_text = tokenizer.apply_chat_template(history, tokenize=False)
31
- # inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
32
- # outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
33
- # decoded = tokenizer.decode(outputs[0])
34
- # response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
35
- # return response
36
-
37
- # demo = gr.ChatInterface(predict, type="messages")
38
-
39
- # demo.launch()
40
-
41
- # import os
42
- # from dotenv import load_dotenv
43
-
44
- # load_dotenv()
45
-
46
- # from huggingface_hub import login
47
- # login(token=os.getenv("HUGGINGFACEHUB_API_KEY"))
48
-
49
- # pipe = pipeline(model=model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
50
- # prompt = """Let's go through this step-by-step:
51
- # 1. You start with 15 muffins.
52
- # 2. You eat 2 muffins, leaving you with 13 muffins.
53
- # 3. You give 5 muffins to your neighbor, leaving you with 8 muffins.
54
- # 4. Your partner buys 6 more muffins, bringing the total number of muffins to 14.
55
- # 5. Your partner eats 2 muffins, leaving you with 12 muffins.
56
- # If you eat 6 muffins, how many are left?"""
57
-
58
- # torch.device("mps")
59
-
60
- # pipeline = pipeline.to("mps")
61
-
62
- # outputs = pipe(prompt, max_new_tokens=20, do_sample=True, top_k=10)
63
- # print(f"processing")
64
-
65
- # for output in outputs:
66
- # print(f"Result: {output['generated_text']}")
67
-
68
  system_prompt = (
69
  "You are a customer officer that helps extract transaction id from the USER INPUT and determine the transaction type based on the transaction id. "
70
  "To find transaction id, follow all the steps below: "
 
2
  import os
3
  from dotenv import load_dotenv
4
 
 
 
5
  load_dotenv()
6
 
7
  from huggingface_hub import login
 
11
  from transformers import AutoModelForCausalLM, AutoTokenizer
12
  import gradio as gr
13
 
14
+ # # HuggingFaceTB/SmolLM2-135M-Instruct
15
  # model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" # 15G
16
  model_name="meta-llama/Llama-3.2-3B-Instruct" # 6.5G
17
 
 
 
 
 
 
18
  device = "mps" # "cuda" or "cpu"
19
  tokenizer = AutoTokenizer.from_pretrained(model_name)
20
  model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  system_prompt = (
23
  "You are a customer officer that helps extract transaction id from the USER INPUT and determine the transaction type based on the transaction id. "
24
  "To find transaction id, follow all the steps below: "