Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the pre-trained GPT-2 model and tokenizer
|
| 6 |
+
model_name = "gpt2"
|
| 7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 8 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Load your custom dataset (replace 'path_to_dataset' with your dataset path)
|
| 11 |
+
# Dataset format should be a text file with one example per line.
|
| 12 |
+
dataset = load_dataset("text", data_files={"train": "path_to_train.txt", "test": "path_to_test.txt"})
|
| 13 |
+
|
| 14 |
+
# Tokenize the dataset
|
| 15 |
+
def tokenize_function(examples):
|
| 16 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
| 17 |
+
|
| 18 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 19 |
+
|
| 20 |
+
# Set up data collator (for padding batch sizes)
|
| 21 |
+
from transformers import DataCollatorForLanguageModeling
|
| 22 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 23 |
+
|
| 24 |
+
# Define training arguments
|
| 25 |
+
training_args = TrainingArguments(
|
| 26 |
+
output_dir="./results",
|
| 27 |
+
overwrite_output_dir=True,
|
| 28 |
+
num_train_epochs=3,
|
| 29 |
+
per_device_train_batch_size=8,
|
| 30 |
+
save_steps=500,
|
| 31 |
+
save_total_limit=2,
|
| 32 |
+
prediction_loss_only=True,
|
| 33 |
+
logging_dir="./logs",
|
| 34 |
+
learning_rate=5e-5,
|
| 35 |
+
warmup_steps=500,
|
| 36 |
+
weight_decay=0.01,
|
| 37 |
+
fp16=torch.cuda.is_available(),
|
| 38 |
+
evaluation_strategy="steps",
|
| 39 |
+
eval_steps=500
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Initialize Trainer
|
| 43 |
+
trainer = Trainer(
|
| 44 |
+
model=model,
|
| 45 |
+
args=training_args,
|
| 46 |
+
train_dataset=tokenized_datasets["train"],
|
| 47 |
+
eval_dataset=tokenized_datasets["test"],
|
| 48 |
+
tokenizer=tokenizer,
|
| 49 |
+
data_collator=data_collator,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Fine-tune the model
|
| 53 |
+
trainer.train()
|
| 54 |
+
|
| 55 |
+
# Save the fine-tuned model
|
| 56 |
+
trainer.save_model("./fine_tuned_gpt2")
|
| 57 |
+
tokenizer.save_pretrained("./fine_tuned_gpt2")
|
| 58 |
+
|
| 59 |
+
print("Model fine-tuned and saved successfully!")
|