Create adequacy.py
Browse files- adequacy.py +40 -0
adequacy.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
+
|
| 3 |
+
tokenizer = AutoTokenizer.from_pretrained("jaimin/parrot_adequacy_model")
|
| 4 |
+
|
| 5 |
+
model = AutoModelForSequenceClassification.from_pretrained("jaimin/parrot_adequacy_model")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Adequacy():
|
| 9 |
+
|
| 10 |
+
def __init__(self, model_tag='jaimin/parrot_adequacy_model', use_auth_token="access"):
|
| 11 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 12 |
+
self.adequacy_model = AutoModelForSequenceClassification.from_pretrained(model_tag,use_auth_token="access")
|
| 13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_tag,use_auth_token="access")
|
| 14 |
+
|
| 15 |
+
def filter(self, input_phrase, para_phrases, adequacy_threshold, device="cpu"):
|
| 16 |
+
top_adequacy_phrases = []
|
| 17 |
+
for para_phrase in para_phrases:
|
| 18 |
+
x = self.tokenizer(input_phrase, para_phrase, return_tensors='pt', max_length=128, truncation=True)
|
| 19 |
+
self.adequacy_model = self.adequacy_model.to(device)
|
| 20 |
+
logits = self.adequacy_model(**x).logits
|
| 21 |
+
probs = logits.softmax(dim=1)
|
| 22 |
+
prob_label_is_true = probs[:, 1]
|
| 23 |
+
adequacy_score = prob_label_is_true.item()
|
| 24 |
+
if adequacy_score >= adequacy_threshold:
|
| 25 |
+
top_adequacy_phrases.append(para_phrase)
|
| 26 |
+
return top_adequacy_phrases
|
| 27 |
+
|
| 28 |
+
def score(self, input_phrase, para_phrases, adequacy_threshold, device="cpu"):
|
| 29 |
+
adequacy_scores = {}
|
| 30 |
+
for para_phrase in para_phrases:
|
| 31 |
+
x = self.tokenizer(input_phrase, para_phrase, return_tensors='pt', max_length=128, truncation=True)
|
| 32 |
+
x = x.to(device)
|
| 33 |
+
self.adequacy_model = self.adequacy_model.to(device)
|
| 34 |
+
logits = self.adequacy_model(**x).logits
|
| 35 |
+
probs = logits.softmax(dim=1)
|
| 36 |
+
prob_label_is_true = probs[:, 1]
|
| 37 |
+
adequacy_score = prob_label_is_true.item()
|
| 38 |
+
if adequacy_score >= adequacy_threshold:
|
| 39 |
+
adequacy_scores[para_phrase] = adequacy_score
|
| 40 |
+
return adequacy_scores
|