Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,15 @@ from transformers import pipeline
|
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
#
|
|
|
|
|
|
|
|
|
|
| 7 |
classifier = pipeline(
|
| 8 |
task="zero-shot-audio-classification",
|
| 9 |
model="laion/clap-htsat-unfused"
|
| 10 |
)
|
| 11 |
|
| 12 |
-
# Labels, die uns interessieren
|
| 13 |
CANDIDATE_LABELS = [
|
| 14 |
"dog barking",
|
| 15 |
"dog growling",
|
|
@@ -21,29 +23,26 @@ CANDIDATE_LABELS = [
|
|
| 21 |
"silence",
|
| 22 |
]
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
ENERGY_QUANTILE = 0.80 # oberes 20%-Quantil als Schwellwert für "laut"
|
| 28 |
-
MIN_EVENT_DURATION = 0.25 # minimale Dauer eines lauten Events (in Sekunden)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def find_loud_events(y, sr):
|
| 35 |
-
"""
|
| 36 |
-
Findet laute Segmente anhand der Signalenergie.
|
| 37 |
-
Gibt eine Liste von (start_s, end_s) zurück.
|
| 38 |
-
"""
|
| 39 |
frame_length = int(sr * ENERGY_FRAME_MS / 1000)
|
| 40 |
hop_length = int(sr * ENERGY_HOP_MS / 1000)
|
| 41 |
-
if frame_length <= 0:
|
| 42 |
-
frame_length = 512
|
| 43 |
-
if hop_length <= 0:
|
| 44 |
-
hop_length = 160
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
rms = librosa.feature.rms(
|
| 48 |
y=y,
|
| 49 |
frame_length=frame_length,
|
|
@@ -56,7 +55,6 @@ def find_loud_events(y, sr):
|
|
| 56 |
hop_length=hop_length
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# Dynamischer Schwellwert: oberes Quantil
|
| 60 |
thr = np.quantile(rms, ENERGY_QUANTILE)
|
| 61 |
mask = rms > thr
|
| 62 |
|
|
@@ -66,18 +64,16 @@ def find_loud_events(y, sr):
|
|
| 66 |
|
| 67 |
for i, is_loud in enumerate(mask):
|
| 68 |
t = times[i]
|
|
|
|
| 69 |
if is_loud and not in_event:
|
| 70 |
-
# Start eines neuen lauten Events
|
| 71 |
in_event = True
|
| 72 |
start_t = t
|
| 73 |
elif not is_loud and in_event:
|
| 74 |
-
# Event endet
|
| 75 |
end_t = t
|
| 76 |
if end_t - start_t >= MIN_EVENT_DURATION:
|
| 77 |
events.append((start_t, end_t))
|
| 78 |
in_event = False
|
| 79 |
|
| 80 |
-
# Falls das letzte Event bis zum Ende durchläuft
|
| 81 |
if in_event:
|
| 82 |
end_t = times[-1]
|
| 83 |
if end_t - start_t >= MIN_EVENT_DURATION:
|
|
@@ -85,118 +81,141 @@ def find_loud_events(y, sr):
|
|
| 85 |
|
| 86 |
return events
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
def bark_probability_for_event(y, sr, start_s, end_s):
|
| 89 |
-
"""
|
| 90 |
-
Berechnet nur für ein kurzes Segment die Wahrscheinlichkeit für 'dog barking'.
|
| 91 |
-
"""
|
| 92 |
start_idx = int(start_s * sr)
|
| 93 |
end_idx = int(end_s * sr)
|
| 94 |
|
| 95 |
-
# Audiosegment (numpy.ndarray)
|
| 96 |
segment = y[start_idx:end_idx]
|
| 97 |
|
| 98 |
-
# Zu kurze Segmente ignorieren
|
| 99 |
if len(segment) < int(0.15 * sr):
|
| 100 |
return 0.0
|
| 101 |
|
| 102 |
-
# WICHTIG: Pipeline direkt mit numpy-Array aufrufen, NICHT mit dict
|
| 103 |
results = classifier(
|
| 104 |
segment,
|
| 105 |
candidate_labels=CANDIDATE_LABELS,
|
| 106 |
multi_label=True,
|
| 107 |
)
|
| 108 |
|
| 109 |
-
# 'dog barking'-Score herausziehen
|
| 110 |
for r in results:
|
| 111 |
if r["label"].lower() == "dog barking":
|
| 112 |
return float(r["score"])
|
| 113 |
|
| 114 |
return 0.0
|
| 115 |
|
|
|
|
|
|
|
|
|
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
def analyze_barking(audio_path):
|
| 119 |
-
# --------- Audio laden ----------
|
| 120 |
-
y, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 121 |
duration = len(y) / sr
|
| 122 |
if duration == 0:
|
| 123 |
-
return "
|
| 124 |
|
| 125 |
-
#
|
| 126 |
loud_events = find_loud_events(y, sr)
|
| 127 |
-
|
| 128 |
if not loud_events:
|
| 129 |
-
return "
|
| 130 |
|
| 131 |
-
#
|
| 132 |
bark_windows = []
|
| 133 |
-
for (
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
if not bark_windows:
|
| 139 |
return (
|
| 140 |
"Es wurde kein Hundebellen mit ausreichend hoher Sicherheit erkannt.\n\n"
|
| 141 |
-
f"(Schwellwert für 'dog barking' = {
|
| 142 |
)
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
bark_windows.sort(key=lambda x: x[0])
|
| 146 |
|
| 147 |
episodes = []
|
| 148 |
-
|
| 149 |
|
| 150 |
-
for
|
| 151 |
-
if
|
| 152 |
-
|
| 153 |
-
current_end = max(current_end, end)
|
| 154 |
else:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
current_start, current_end = start, end
|
| 158 |
|
| 159 |
-
episodes.append((
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
|
| 165 |
lines = []
|
| 166 |
-
lines.append(f"**A: Anzahl der Bell-Ereignisse:** {
|
| 167 |
-
lines.append(f"**B: Gesamtdauer des Bellens:** {
|
| 168 |
-
lines.append("")
|
| 169 |
lines.append(
|
| 170 |
-
f"
|
|
|
|
| 171 |
)
|
| 172 |
-
lines.append("
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
lines.append(
|
| 177 |
-
f"- Ereignis {i}: von {e_start:.1f}s bis {e_end:.1f}s "
|
| 178 |
-
f"(Dauer: {dur:.1f}s)"
|
| 179 |
-
)
|
| 180 |
|
| 181 |
return "\n".join(lines)
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
demo = gr.Interface(
|
| 185 |
fn=analyze_barking,
|
| 186 |
-
inputs=
|
| 187 |
outputs=gr.Markdown(),
|
| 188 |
-
title="Barking Episode Analyzer (
|
| 189 |
description=(
|
| 190 |
-
"
|
| 191 |
-
"
|
| 192 |
-
"-
|
| 193 |
-
"-
|
| 194 |
-
"- Bellen-Segmente, die weniger als 3 Sekunden auseinander liegen, zählen als ein Ereignis.\n"
|
| 195 |
-
"- Ausgabe:\n"
|
| 196 |
-
" A) Anzahl der Bell-Ereignisse\n"
|
| 197 |
-
" B) Gesamtdauer des Bellens"
|
| 198 |
),
|
| 199 |
)
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
demo.launch()
|
|
|
|
|
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
+
# ---------------------------------------------------------
|
| 7 |
+
# 1. AUDIO-MODELL LADEN
|
| 8 |
+
# ---------------------------------------------------------
|
| 9 |
+
|
| 10 |
classifier = pipeline(
|
| 11 |
task="zero-shot-audio-classification",
|
| 12 |
model="laion/clap-htsat-unfused"
|
| 13 |
)
|
| 14 |
|
|
|
|
| 15 |
CANDIDATE_LABELS = [
|
| 16 |
"dog barking",
|
| 17 |
"dog growling",
|
|
|
|
| 23 |
"silence",
|
| 24 |
]
|
| 25 |
|
| 26 |
+
# ---------------------------------------------------------
|
| 27 |
+
# 2. FESTE PARAMETER FÜR ENERGIE-ANALYSE
|
| 28 |
+
# ---------------------------------------------------------
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
ENERGY_FRAME_MS = 25 # Frame-Länge für Energie (ms)
|
| 31 |
+
ENERGY_HOP_MS = 10 # Schrittweite (ms)
|
| 32 |
+
ENERGY_QUANTILE = 0.80 # Lautheitsschwelle (oberes 20%-Quantil)
|
| 33 |
+
MIN_EVENT_DURATION = 0.25 # min. Dauer eines lauten Events (Sek.)
|
| 34 |
|
| 35 |
+
# ---------------------------------------------------------
|
| 36 |
+
# 3. FUNKTION: LAUTE EVENTS FINDEN
|
| 37 |
+
# ---------------------------------------------------------
|
| 38 |
|
| 39 |
def find_loud_events(y, sr):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
frame_length = int(sr * ENERGY_FRAME_MS / 1000)
|
| 41 |
hop_length = int(sr * ENERGY_HOP_MS / 1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
frame_length = max(frame_length, 512)
|
| 44 |
+
hop_length = max(hop_length, 128)
|
| 45 |
+
|
| 46 |
rms = librosa.feature.rms(
|
| 47 |
y=y,
|
| 48 |
frame_length=frame_length,
|
|
|
|
| 55 |
hop_length=hop_length
|
| 56 |
)
|
| 57 |
|
|
|
|
| 58 |
thr = np.quantile(rms, ENERGY_QUANTILE)
|
| 59 |
mask = rms > thr
|
| 60 |
|
|
|
|
| 64 |
|
| 65 |
for i, is_loud in enumerate(mask):
|
| 66 |
t = times[i]
|
| 67 |
+
|
| 68 |
if is_loud and not in_event:
|
|
|
|
| 69 |
in_event = True
|
| 70 |
start_t = t
|
| 71 |
elif not is_loud and in_event:
|
|
|
|
| 72 |
end_t = t
|
| 73 |
if end_t - start_t >= MIN_EVENT_DURATION:
|
| 74 |
events.append((start_t, end_t))
|
| 75 |
in_event = False
|
| 76 |
|
|
|
|
| 77 |
if in_event:
|
| 78 |
end_t = times[-1]
|
| 79 |
if end_t - start_t >= MIN_EVENT_DURATION:
|
|
|
|
| 81 |
|
| 82 |
return events
|
| 83 |
|
| 84 |
+
# ---------------------------------------------------------
|
| 85 |
+
# 4. FUNKTION: BELL-PROBABILITÄT FÜR EIN EVENT
|
| 86 |
+
# ---------------------------------------------------------
|
| 87 |
+
|
| 88 |
def bark_probability_for_event(y, sr, start_s, end_s):
|
|
|
|
|
|
|
|
|
|
| 89 |
start_idx = int(start_s * sr)
|
| 90 |
end_idx = int(end_s * sr)
|
| 91 |
|
|
|
|
| 92 |
segment = y[start_idx:end_idx]
|
| 93 |
|
|
|
|
| 94 |
if len(segment) < int(0.15 * sr):
|
| 95 |
return 0.0
|
| 96 |
|
|
|
|
| 97 |
results = classifier(
|
| 98 |
segment,
|
| 99 |
candidate_labels=CANDIDATE_LABELS,
|
| 100 |
multi_label=True,
|
| 101 |
)
|
| 102 |
|
|
|
|
| 103 |
for r in results:
|
| 104 |
if r["label"].lower() == "dog barking":
|
| 105 |
return float(r["score"])
|
| 106 |
|
| 107 |
return 0.0
|
| 108 |
|
| 109 |
+
# ---------------------------------------------------------
|
| 110 |
+
# 5. HAUPT-ANALYSEFUNKTION (mit UI-Parametern)
|
| 111 |
+
# ---------------------------------------------------------
|
| 112 |
|
| 113 |
+
def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold):
|
| 114 |
+
# 0. Upload prüfen
|
| 115 |
+
if audio_path is None or audio_path == "":
|
| 116 |
+
return "Es wurde keine Audiodatei hochgeladen."
|
| 117 |
+
|
| 118 |
+
# 1. Audio laden
|
| 119 |
+
try:
|
| 120 |
+
y, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"Fehler beim Laden der Audiodatei: {e}"
|
| 123 |
|
|
|
|
|
|
|
|
|
|
| 124 |
duration = len(y) / sr
|
| 125 |
if duration == 0:
|
| 126 |
+
return "Die Audiodatei ist leer."
|
| 127 |
|
| 128 |
+
# 2. Laute Ereignisse finden
|
| 129 |
loud_events = find_loud_events(y, sr)
|
|
|
|
| 130 |
if not loud_events:
|
| 131 |
+
return "Keine lauten Ereignisse gefunden – vermutlich kein Bellen."
|
| 132 |
|
| 133 |
+
# 3. Nur laute Events mit Modell prüfen
|
| 134 |
bark_windows = []
|
| 135 |
+
for (s, e) in loud_events:
|
| 136 |
+
try:
|
| 137 |
+
score = bark_probability_for_event(y, sr, s, e)
|
| 138 |
+
except Exception as ex:
|
| 139 |
+
print(f"Fehler im Modellaufruf bei {s:.2f}-{e:.2f}s: {ex}")
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
if score >= bark_prob_threshold:
|
| 143 |
+
bark_windows.append((s, e, score))
|
| 144 |
|
| 145 |
if not bark_windows:
|
| 146 |
return (
|
| 147 |
"Es wurde kein Hundebellen mit ausreichend hoher Sicherheit erkannt.\n\n"
|
| 148 |
+
f"(Schwellwert für 'dog barking' = {bark_prob_threshold:.2f})"
|
| 149 |
)
|
| 150 |
|
| 151 |
+
# 4. Episoden aus Bell-Segmenten bilden
|
| 152 |
+
bark_windows.sort(key=lambda x: x[0])
|
| 153 |
|
| 154 |
episodes = []
|
| 155 |
+
cur_start, cur_end, _ = bark_windows[0]
|
| 156 |
|
| 157 |
+
for s, e, _ in bark_windows[1:]:
|
| 158 |
+
if s - cur_end <= max_pause_sec:
|
| 159 |
+
cur_end = max(cur_end, e)
|
|
|
|
| 160 |
else:
|
| 161 |
+
episodes.append((cur_start, cur_end))
|
| 162 |
+
cur_start, cur_end = s, e
|
|
|
|
| 163 |
|
| 164 |
+
episodes.append((cur_start, cur_end))
|
| 165 |
|
| 166 |
+
# 5. Kennzahlen
|
| 167 |
+
count = len(episodes)
|
| 168 |
+
total_seconds = sum(e2 - e1 for (e1, e2) in episodes)
|
| 169 |
|
| 170 |
lines = []
|
| 171 |
+
lines.append(f"**A: Anzahl der Bell-Ereignisse:** {count}")
|
| 172 |
+
lines.append(f"**B: Gesamtdauer des Bellens:** {total_seconds:.1f} Sekunden\n")
|
|
|
|
| 173 |
lines.append(
|
| 174 |
+
f"_Regel_: > {max_pause_sec:.1f} Sekunden Pause = neues Ereignis\n"
|
| 175 |
+
f"_Schwellwert 'dog barking'_: {bark_prob_threshold:.2f}\n"
|
| 176 |
)
|
| 177 |
+
lines.append("**Details:**")
|
| 178 |
+
for i, (s, e) in enumerate(episodes, start=1):
|
| 179 |
+
dur = e - s
|
| 180 |
+
lines.append(f"- Ereignis {i}: {s:.1f}s bis {e:.1f}s — Dauer: {dur:.1f}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
return "\n".join(lines)
|
| 183 |
|
| 184 |
+
# ---------------------------------------------------------
|
| 185 |
+
# 6. GRADIO UI – MIT SLIDERN
|
| 186 |
+
# ---------------------------------------------------------
|
| 187 |
+
|
| 188 |
+
audio_input = gr.Audio(type="filepath", label="Audio hochladen (.wav, .mp3)")
|
| 189 |
+
|
| 190 |
+
pause_slider = gr.Slider(
|
| 191 |
+
minimum=1.0,
|
| 192 |
+
maximum=10.0,
|
| 193 |
+
value=3.0,
|
| 194 |
+
step=0.5,
|
| 195 |
+
label="Maximale Pause zwischen Bellen (Sekunden)",
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
threshold_slider = gr.Slider(
|
| 199 |
+
minimum=0.1,
|
| 200 |
+
maximum=0.9,
|
| 201 |
+
value=0.35,
|
| 202 |
+
step=0.05,
|
| 203 |
+
label="Schwellwert für 'dog barking' (0–1)",
|
| 204 |
+
)
|
| 205 |
|
| 206 |
demo = gr.Interface(
|
| 207 |
fn=analyze_barking,
|
| 208 |
+
inputs=[audio_input, pause_slider, threshold_slider],
|
| 209 |
outputs=gr.Markdown(),
|
| 210 |
+
title="Barking Episode Analyzer (mit Parametern)",
|
| 211 |
description=(
|
| 212 |
+
"Erkennt Hundebellen in Aufnahmen.\n\n"
|
| 213 |
+
"Stell unten ein:\n"
|
| 214 |
+
"- wie lang die Pause sein darf, bevor ein neues Ereignis gezählt wird,\n"
|
| 215 |
+
"- ab welchem Schwellwert das Modell 'dog barking' als Bellen zählt."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
),
|
| 217 |
)
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
demo.launch()
|
| 221 |
+
|