Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ import plotly.express as px
|
|
| 14 |
st.set_page_config(
|
| 15 |
page_title="FATA4 Science",
|
| 16 |
page_icon=":microscope:",
|
| 17 |
-
layout="wide",
|
| 18 |
initial_sidebar_state="auto",
|
| 19 |
menu_items={
|
| 20 |
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
|
|
@@ -119,11 +119,23 @@ if query:
|
|
| 119 |
fig = plt.gcf()
|
| 120 |
fig.patch.set_facecolor('#CCFFFF')
|
| 121 |
# # display the treemap in Streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
treemap1, treemap2 = st.columns(2)
|
| 123 |
with treemap1:
|
| 124 |
st.subheader(f"Top 10 Words closely related to {query}")
|
| 125 |
-
st.pyplot(fig)
|
| 126 |
-
plt.clf()
|
|
|
|
| 127 |
|
| 128 |
csv = table.head(100).to_csv().encode('utf-8')
|
| 129 |
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
|
|
@@ -162,10 +174,27 @@ if query:
|
|
| 162 |
fig2 = plt.gcf()
|
| 163 |
fig2.patch.set_facecolor('#CCFFFF')
|
| 164 |
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
# # display the treemap in Streamlit
|
| 166 |
with treemap2:
|
| 167 |
st.subheader(f"Top 10 Genes closely related to {query}")
|
| 168 |
-
st.pyplot(fig2)
|
|
|
|
| 169 |
|
| 170 |
csv = df1.head(100).to_csv().encode('utf-8')
|
| 171 |
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
|
@@ -208,6 +237,9 @@ if query:
|
|
| 208 |
st.video("https://www.youtube.com/watch?v=" + video_ids[2])
|
| 209 |
st.markdown("---")
|
| 210 |
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
|
| 213 |
|
|
|
|
| 14 |
st.set_page_config(
|
| 15 |
page_title="FATA4 Science",
|
| 16 |
page_icon=":microscope:",
|
| 17 |
+
layout="wide", #centered
|
| 18 |
initial_sidebar_state="auto",
|
| 19 |
menu_items={
|
| 20 |
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
|
|
|
|
| 119 |
fig = plt.gcf()
|
| 120 |
fig.patch.set_facecolor('#CCFFFF')
|
| 121 |
# # display the treemap in Streamlit
|
| 122 |
+
|
| 123 |
+
rank_num = list(short_table.index.tolist())
|
| 124 |
+
avg_size = sum(sizes) / len(short_table.index)
|
| 125 |
+
print(rank_num)
|
| 126 |
+
# print(sizes)
|
| 127 |
+
fig = px.treemap(short_table, path=[short_table.index], values=sizes, color=sizes, color_continuous_scale='greens',
|
| 128 |
+
color_continuous_midpoint=avg_size)
|
| 129 |
+
fig.update(layout_coloraxis_showscale=False)
|
| 130 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
treemap1, treemap2 = st.columns(2)
|
| 134 |
with treemap1:
|
| 135 |
st.subheader(f"Top 10 Words closely related to {query}")
|
| 136 |
+
# st.pyplot(fig)
|
| 137 |
+
# plt.clf()
|
| 138 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 139 |
|
| 140 |
csv = table.head(100).to_csv().encode('utf-8')
|
| 141 |
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
|
|
|
|
| 174 |
fig2 = plt.gcf()
|
| 175 |
fig2.patch.set_facecolor('#CCFFFF')
|
| 176 |
#
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# link_ref = '<a href="http://google.com" style="cursor: pointer" target="_blank" rel="noopener noreferrer">{}</a>'
|
| 181 |
+
# df10['SIMILARITY'] = df10['SIMILARITY'].apply(lambda item: link_ref.format(item, "{}"))
|
| 182 |
+
rank_num = list(df10.index.tolist())
|
| 183 |
+
avg_size = sum(sizes) / len(df10.index)
|
| 184 |
+
print(rank_num)
|
| 185 |
+
# print(sizes)
|
| 186 |
+
fig = px.treemap(path=[df10.index], values=sizes, color=sizes, color_continuous_scale='greens',
|
| 187 |
+
color_continuous_midpoint=avg_size)
|
| 188 |
+
fig.update(layout_coloraxis_showscale=False)
|
| 189 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", uniformtext_mode="hide", plot_bgcolor="#fff")
|
| 190 |
+
fig.update_traces(root_color='rgba(0,0,0,0)')
|
| 191 |
+
|
| 192 |
+
|
| 193 |
# # display the treemap in Streamlit
|
| 194 |
with treemap2:
|
| 195 |
st.subheader(f"Top 10 Genes closely related to {query}")
|
| 196 |
+
# st.pyplot(fig2)
|
| 197 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 198 |
|
| 199 |
csv = df1.head(100).to_csv().encode('utf-8')
|
| 200 |
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
|
|
|
| 237 |
st.video("https://www.youtube.com/watch?v=" + video_ids[2])
|
| 238 |
st.markdown("---")
|
| 239 |
|
| 240 |
+
# fig = plt.figure()
|
| 241 |
+
|
| 242 |
+
|
| 243 |
|
| 244 |
|
| 245 |
|