import json import os import queue import random import time import traceback from abc import ABC, abstractmethod from multiprocessing import Process, Queue import openai import pandas as pd import requests from requests.exceptions import RequestException, Timeout, ConnectionError as RequestsConnectionError # Set OpenAI API key # openai.api_key = "" # Set Chutes AI API key (commented out) # Use multiprocessing to implement real timeout mechanism def _timeout_target(queue, func, args, kwargs): """multiprocessing target function, must be defined at module level to be pickled""" try: result = func(*args, **kwargs) queue.put(('success', result)) except Exception as e: tb = traceback.format_exc() print(f"Exception in subprocess:\n{tb}") queue.put(('error', f"{type(e).__name__}: {str(e)}\n{tb}")) def call_with_timeout(func, args, kwargs, timeout_seconds=60): """use multiprocessing to implement API call timeout, can force terminate""" queue = Queue() process = Process(target=_timeout_target, args=(queue, func, args, kwargs)) process.start() process.join(timeout_seconds) if process.is_alive(): # force terminate process process.terminate() process.join() print( f"API call timed out after {timeout_seconds} seconds and process was terminated") return {"error": f"API call timed out after {timeout_seconds} seconds"} try: result_type, result = queue.get_nowait() if result_type == 'success': return result else: return {"error": result} except queue.Empty: return {"error": "Process completed but no result returned"} # ====================== # 1. Configuration (Prompt + Schema) # ====================== # ---- Agent 1 Prompt ---- AGENT_1_PROMPT_TEMPLATE = """\ Please help me construct one item as stimuli for a psycholinguistic experiment based on the description: Experimental stimuli design: {experiment_design} Existing stimuli (DO NOT repeat any of these): {previous_stimuli} Previously rejected stimuli with validation feedback (learn from these failures and avoid similar issues): {rejected_stimuli} CRITICAL REQUIREMENTS: 1. Generate a COMPLETELY NEW and UNIQUE stimulus that is DIFFERENT from ALL existing stimuli above. 2. Do NOT repeat or slightly modify any existing stimulus - create something entirely original. 3. Avoid any content that overlaps with existing or rejected stimuli. 4. Learn from the rejected stimuli above - understand why they failed validation and avoid making similar mistakes. {generation_requirements} Please return in JSON format. """ # ---- Agent 2 Prompt ---- AGENT_2_PROMPT_TEMPLATE = """\ Please verify the following NEW STIMULUS with utmost precision, ensuring they meet the Experimental stimuli design and following strict criteria. NEW STIMULUS: {new_stimulus}; Experimental stimuli design: {experiment_design} Please return in JSON format. """ # ---- Agent 3 Prompt ---- AGENT_3_PROMPT_TEMPLATE = """\ Please rate the following STIMULUS based on the Experimental stimuli design provided for a psychological experiment: STIMULUS: {valid_stimulus} Experimental stimuli design: {experiment_design} SCORING REQUIREMENTS: {scoring_requirements} Please return in JSON format including the score for each dimension within the specified ranges. """ # ---- Agent 1 Stimulus Schema ---- AGENT_1_PROPERTIES = {} # ---- Agent 2 Validation Result Schema ---- AGENT_2_PROPERTIES = {} # ---- Agent 3 Scoring Result Schema ---- AGENT_3_PROPERTIES = {} # ====================== # 2. Abstract Model Client Interface # ====================== class ModelClient(ABC): """Abstract base class for model clients""" @abstractmethod def generate_completion(self, prompt, properties, params=None): """Generate a completion with JSON schema response format""" pass @abstractmethod def get_default_params(self): """Get default parameters for this model""" pass # ====================== # 3. Concrete Model Client Implementations # ====================== class OpenAIClient(ModelClient): """OpenAI GPT model client""" def __init__(self, api_key=None): self.api_key = api_key if api_key: openai.api_key = api_key print("OpenAI API key configured successfully") else: print("Warning: No OpenAI API key provided!") def _api_call(self, prompt, properties, params, api_key): """API call function, will be called by multiprocessing""" # set API key in subprocess openai.api_key = api_key return openai.ChatCompletion.create( model=params["model"], messages=[{"role": "user", "content": prompt}], response_format={ "type": "json_schema", "json_schema": { "name": "response_schema", "schema": { "type": "object", "properties": properties, "required": list(properties.keys()), "additionalProperties": False } } } ) def generate_completion(self, prompt, properties, params=None): """Generate completion using OpenAI API""" if params is None: params = self.get_default_params() # retry mechanism for attempt in range(3): try: response = call_with_timeout( self._api_call, (prompt, properties, params, self.api_key), {}, 60) if isinstance(response, dict) and "error" in response: print(f"OpenAI API timeout attempt {attempt + 1}/3") if attempt == 2: # last attempt return {"error": "API timeout after 3 attempts"} time.sleep(2 ** attempt) # exponential backoff continue return json.loads(response['choices'][0]['message']['content']) except json.JSONDecodeError as e: print(f"Failed to parse OpenAI JSON response: {e}") return {"error": f"Failed to parse response: {str(e)}"} except (openai.error.APIError, openai.error.RateLimitError) as e: print(f"OpenAI API error attempt {attempt + 1}/3: {e}") if attempt == 2: return {"error": f"OpenAI API error after 3 attempts: {str(e)}"} time.sleep(2 ** attempt) except openai.error.AuthenticationError as e: print(f"OpenAI authentication error: {e}") return {"error": f"Authentication failed: {str(e)}"} except openai.error.InvalidRequestError as e: print(f"OpenAI invalid request: {e}") return {"error": f"Invalid request: {str(e)}"} def get_default_params(self): return {"model": "gpt-4o"} # class HuggingFaceClient(ModelClient): # """Hugging Face model client""" # def __init__(self, api_key): # self.api_key = api_key # def _api_call(self, messages, response_format, params): # """API call function that will be called by multiprocessing""" # client = InferenceClient( # params["model"], # token=self.api_key, # headers={"x-use-cache": "false"} # ) # return client.chat_completion( # messages=messages, # response_format=response_format, # max_tokens=params.get("max_tokens", 1000), # temperature=params.get("temperature", 0.7) # ) # def generate_completion(self, prompt, properties, params=None): # """Generate completion using Hugging Face API""" # if params is None: # params = self.get_default_params() # response_format = { # "type": "json_schema", # "json_schema": { # "name": "response_schema", # "schema": { # "type": "object", # "properties": properties, # "required": list(properties.keys()), # "additionalProperties": False # } # } # } # messages = [{"role": "user", "content": prompt}] # # Retry mechanism # for attempt in range(3): # try: # response = call_with_timeout( # self._api_call, (messages, response_format, params), {}, 60) # if isinstance(response, dict) and "error" in response: # print(f"HuggingFace API timeout attempt {attempt + 1}/3") # if attempt == 2: # return {"error": "API timeout after 3 attempts"} # time.sleep(2 ** attempt) # continue # content = response.choices[0].message.content # return json.loads(content) # except (json.JSONDecodeError, AttributeError, IndexError) as e: # print(f"Failed to parse HuggingFace JSON response: {e}") # return {"error": "Failed to parse response"} # except Exception as e: # print(f"HuggingFace API error attempt {attempt + 1}/3: {e}") # if attempt == 2: # return {"error": f"API error after 3 attempts: {str(e)}"} # time.sleep(2 ** attempt) # def get_default_params(self): # return { # "model": "meta-llama/Llama-3.3-70B-Instruct", # } class CustomModelClient(ModelClient): """Custom model client for user-defined APIs""" def __init__(self, api_url, api_key, model_name): self.api_url = api_url self.api_key = api_key self.model_name = model_name def _api_call(self, request_data, headers): """API call function, will be called by multiprocessing""" try: response = requests.post( self.api_url, headers=headers, json=request_data, timeout=60 # timeout for requests ) response.raise_for_status() return response.json() except Timeout: raise Timeout( f"Request to {self.api_url} timed out after 60 seconds") except RequestsConnectionError as e: raise RequestsConnectionError( f"Failed to connect to {self.api_url}: {str(e)}") except RequestException as e: raise RequestException(f"Request failed: {str(e)}") def generate_completion(self, prompt, properties, params=None): is_deepseek = self.api_url.strip().startswith("https://api.deepseek.com") if is_deepseek: rand_stamp = int(time.time()) # Generate field list field_list = ', '.join([f'"{k}"' for k in properties.keys()]) # Determine agent type # If starts with "Please verify the following NEW STIMULUS ", then return at the end of prompt, each field can only return boolean value if prompt.strip().startswith("Please verify the following NEW STIMULUS"): prompt = prompt.rstrip() + \ f"\nPlease return in strict JSON format, fields must include: {field_list}, requirements for each field are as follows: {properties}, each field can only return boolean values (True/False)" elif prompt.strip().startswith("Please rate the following STIMULUS"): prompt = prompt.rstrip() + \ f"\nPlease return in strict JSON format, fields must include: {field_list}, requirements for each field are as follows: {properties}, each field can only return numbers" else: prompt = prompt.rstrip() + \ f"\nPlease return in strict JSON format, fields must include: {field_list}, requirements for each field are as follows: {properties}" request_data = { "model": self.model_name, "messages": [ {"role": "system", "content": f"RAND:{rand_stamp}"}, {"role": "user", "content": prompt} ], "stream": False, "response_format": {"type": "json_object"} } else: # build base request request_data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], "stream": False, "response_format": { "type": "json_schema", "json_schema": { "name": "response_schema", "schema": { "type": "object", "properties": properties, "required": list(properties.keys()), "additionalProperties": False } } } } if params is not None: request_data.update(params) headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } # retry mechanism for attempt in range(3): try: print("Sending request to Custom API with:", json.dumps(request_data, indent=2)) result = call_with_timeout( self._api_call, (request_data, headers), {}, 600) if isinstance(result, dict) and "error" in result: print(f"Custom API timeout attempt {attempt + 1}/3") if attempt == 2: return {"error": "API timeout after 3 attempts"} time.sleep(2 ** attempt) continue print("Response from Custom API:", json.dumps(result, indent=2)) content = result["choices"][0]["message"]["content"] return json.loads(content) except json.JSONDecodeError as e: print( f"Custom API JSON parsing error attempt {attempt + 1}/3: {e}") if attempt == 2: return {"error": f"API JSON parsing error after 3 attempts: {str(e)}"} time.sleep(2 ** attempt) except KeyError as e: print( f"Custom API response missing expected key attempt {attempt + 1}/3: {e}") if attempt == 2: return {"error": f"API response missing expected key after 3 attempts: {str(e)}"} time.sleep(2 ** attempt) except (Timeout, RequestsConnectionError) as e: print( f"Custom API connection error attempt {attempt + 1}/3: {e}") if attempt == 2: return {"error": f"API connection error after 3 attempts: {str(e)}"} time.sleep(2 ** attempt) except RequestException as e: print(f"Custom API request error attempt {attempt + 1}/3: {e}") if attempt == 2: return {"error": f"API request error after 3 attempts: {str(e)}"} time.sleep(2 ** attempt) def get_default_params(self): return { } # ====================== # 4. Model Client Factory # ====================== def create_model_client(model_choice, settings=None): """Factory function to create appropriate model client""" if model_choice == 'GPT-4o': api_key = settings.get('api_key') if settings else None return OpenAIClient(api_key) elif model_choice == 'custom': if not settings: raise ValueError("Settings required for custom model") return CustomModelClient( api_url=settings.get('apiUrl'), api_key=settings.get('api_key'), model_name=settings.get('modelName') ) # elif model_choice == 'HuggingFace': # api_key = settings.get('api_key') # return HuggingFaceClient(api_key) else: raise ValueError(f"Unsupported model choice: {model_choice}") # ====================== # 5. Unified Agent Functions # ====================== def check_stimulus_repetition(new_stimulus_dict, previous_stimuli_list): """ If the value of any key (dimension) in new_stimulus_dict is exactly the same as the corresponding value in any stimulus in previous_stimuli_list, it is considered a repetition. """ for existing_stimulus in previous_stimuli_list: for key, new_value in new_stimulus_dict.items(): # If the key exists in existing_stimulus and the values are the same, it is considered a repetition if key in existing_stimulus: try: existing_val = str(existing_stimulus[key]).lower() new_val = str(new_value).lower() if existing_val == new_val: return True except (AttributeError, TypeError): # Skip comparison if values can't be converted to string continue return False def agent_1_generate_stimulus( model_client, experiment_design, previous_stimuli, properties, rejected_stimuli=None, prompt_template=AGENT_1_PROMPT_TEMPLATE, params=None, stop_event=None): """ Agent 1: Generate new stimulus using the provided model client """ if stop_event and stop_event.is_set(): print("Generation stopped by user in agent_1_generate_stimulus.") return {"stimulus": "STOPPED"} # Use fixed generation_requirements generation_requirements = "5. Follow the same JSON format as the existing stimuli." if rejected_stimuli is None: rejected_stimuli = [] prompt = prompt_template.format( experiment_design=experiment_design, previous_stimuli=previous_stimuli, rejected_stimuli=rejected_stimuli, generation_requirements=generation_requirements ) try: result = model_client.generate_completion(prompt, properties, params) # Check stop event again if stop_event and stop_event.is_set(): print( "Generation stopped by user after API call in agent_1_generate_stimulus.") return {"stimulus": "STOPPED"} if "error" in result: return {"stimulus": "ERROR/ERROR"} return result except (json.JSONDecodeError, KeyError, TypeError) as e: print(f"Error parsing response in agent_1_generate_stimulus: {e}") return {"stimulus": "ERROR/ERROR"} except (RequestException, Timeout) as e: print(f"Network error in agent_1_generate_stimulus: {e}") return {"stimulus": "ERROR/ERROR"} def agent_2_validate_stimulus( model_client, new_stimulus, experiment_design, properties, prompt_template=AGENT_2_PROMPT_TEMPLATE, stop_event=None): """ Agent 2: Validate experimental stimulus using the provided model client """ if stop_event and stop_event.is_set(): print("Generation stopped by user in agent_2_validate_stimulus.") return {"error": "Stopped by user"} prompt = prompt_template.format( experiment_design=experiment_design, new_stimulus=new_stimulus ) try: # use temperature=0 parameter, get model-specific default params and override temperature fixed_params = model_client.get_default_params() fixed_params["temperature"] = 0 result = model_client.generate_completion( prompt, properties, fixed_params) print("Agent 2 Output:", result) # Check stop event again if stop_event and stop_event.is_set(): print( "Generation stopped by user after API call in agent_2_validate_stimulus.") return {"error": "Stopped by user"} if "error" in result: print(f"Agent 2 API error: {result}") return {"error": f"Failed to validate stimulus: {result.get('error', 'Unknown error')}"} return result except (json.JSONDecodeError, KeyError, TypeError) as e: print(f"Error parsing validation response: {e}") return {"error": f"Failed to parse validation response: {str(e)}"} except (RequestException, Timeout) as e: print(f"Network error in validation: {e}") return {"error": f"Network error during validation: {str(e)}"} def agent_2_validate_stimulus_individual( model_client, new_stimulus, experiment_design, properties, prompt_template=AGENT_2_PROMPT_TEMPLATE, stop_event=None, websocket_callback=None): """ Agent 2: Validate experimental stimulus by checking each criterion individually """ if stop_event and stop_event.is_set(): print("Generation stopped by user in agent_2_validate_stimulus_individual.") return {"error": "Stopped by user"} validation_results = {} # Create individual prompt template for each criterion individual_prompt_template = """\ Please verify the following NEW STIMULUS with utmost precision for the specific criterion mentioned below. NEW STIMULUS: {new_stimulus} Experimental stimuli design: {experiment_design} SPECIFIC CRITERION TO VALIDATE: Property: {property_name} Description: {property_description} Please return in JSON format with only one field: "{property_name}" (boolean: true if criterion is met, false otherwise). """ try: total_criteria = len(properties) current_criterion = 0 for property_name, property_description in properties.items(): current_criterion += 1 if stop_event and stop_event.is_set(): print( f"Generation stopped by user while validating {property_name}.") return {"error": "Stopped by user"} if websocket_callback: websocket_callback( "validator", f"Validating criterion {current_criterion}/{total_criteria}: {property_name}") # Create prompt for individual criterion prompt = individual_prompt_template.format( new_stimulus=new_stimulus, experiment_design=experiment_design, property_name=property_name, property_description=property_description ) # Create properties dict with single criterion single_property = {property_name: property_description} # Get model-specific default params and override temperature fixed_params = model_client.get_default_params() fixed_params["temperature"] = 0 result = model_client.generate_completion( prompt, single_property, fixed_params) print(f"Agent 2 Individual Validation - {property_name}: {result}") if "error" in result: print( f"Agent 2 Individual API error for {property_name}: {result}") if websocket_callback: websocket_callback( "validator", f"Error validating criterion {property_name}: {result.get('error', 'Unknown error')}") return {"error": f"Failed to validate criterion {property_name}: {result.get('error', 'Unknown error')}"} # Extract the validation result for this criterion if property_name in result: validation_results[property_name] = result[property_name] status = "PASSED" if result[property_name] else "FAILED" if websocket_callback: websocket_callback( "validator", f"Criterion {property_name}: {status}") # Early stop: if any criterion fails, immediately reject if not result[property_name]: if websocket_callback: websocket_callback( "validator", f"Early rejection: Criterion {property_name} failed. Stopping validation.") print( f"Agent 2 Individual Validation - Early stop: {property_name} failed") return validation_results else: print( f"Warning: {property_name} not found in result, assuming False") validation_results[property_name] = False if websocket_callback: websocket_callback( "validator", f"Criterion {property_name}: FAILED (parsing error)") websocket_callback( "validator", f"Early rejection: Criterion {property_name} failed. Stopping validation.") print( f"Agent 2 Individual Validation - Early stop: {property_name} failed (parsing error)") return validation_results print("Agent 2 Individual Validation - All Results:", validation_results) if websocket_callback: websocket_callback( "validator", "All criteria passed successfully!") return validation_results except (json.JSONDecodeError, KeyError, TypeError) as e: print(f"Error parsing individual validation response: {e}") return {"error": f"Failed to parse validation response: {str(e)}"} except (RequestException, Timeout) as e: print(f"Network error in individual validation: {e}") return {"error": f"Network error during validation: {str(e)}"} def generate_scoring_requirements(properties): """ Generate scoring requirements text from properties dictionary """ if not properties: return "No specific scoring requirements provided." requirements = [] for aspect_name, aspect_details in properties.items(): min_score = aspect_details.get('minimum', 0) max_score = aspect_details.get('maximum', 10) description = aspect_details.get('description', aspect_name) requirements.append( f"- {aspect_name}: {description} (Score range: {min_score} to {max_score})") return "\n".join(requirements) def agent_3_score_stimulus( model_client, valid_stimulus, experiment_design, properties, prompt_template=AGENT_3_PROMPT_TEMPLATE, stop_event=None): """ Agent 3: Score experimental stimulus using the provided model client """ if stop_event and stop_event.is_set(): print("Generation stopped by user after API call in agent_3_score_stimulus.") return {field: 0 for field in properties.keys()} if properties else {} # Generate scoring requirements text scoring_requirements = generate_scoring_requirements(properties) prompt = prompt_template.format( experiment_design=experiment_design, valid_stimulus=valid_stimulus, scoring_requirements=scoring_requirements ) try: # use temperature=0 parameter, get model-specific default params and override temperature fixed_params = model_client.get_default_params() fixed_params["temperature"] = 0 result = model_client.generate_completion( prompt, properties, fixed_params) if stop_event and stop_event.is_set(): print("Generation stopped by user after API call in agent_3_score_stimulus.") return {field: 0 for field in properties.keys()} if properties else {} if "error" in result: print(f"Agent 3 API error: {result}") return {field: 0 for field in properties.keys()} return result except (json.JSONDecodeError, KeyError, TypeError) as e: print(f"Error parsing scoring response: {e}") return {field: 0 for field in properties.keys()} except (RequestException, Timeout) as e: print(f"Network error in scoring: {e}") return {field: 0 for field in properties.keys()} def agent_3_score_stimulus_individual( model_client, valid_stimulus, experiment_design, properties, prompt_template=AGENT_3_PROMPT_TEMPLATE, stop_event=None, websocket_callback=None): """ Agent 3: Score experimental stimulus by evaluating each aspect individually """ if stop_event and stop_event.is_set(): print("Generation stopped by user in agent_3_score_stimulus_individual.") return {field: 0 for field in properties.keys()} if properties else {} scoring_results = {} # Create individual prompt template for each aspect individual_prompt_template = """\ Please rate the following STIMULUS based on the specific aspect mentioned below for a psychological experiment: STIMULUS: {valid_stimulus} Experimental stimuli design: {experiment_design} SPECIFIC ASPECT TO SCORE: - Aspect Name: {aspect_name} - Description: {aspect_description} - Minimum Score: {min_score} - Maximum Score: {max_score} - Score Range: You must provide an integer score between {min_score} and {max_score} (inclusive) SCORING INSTRUCTIONS: Rate this stimulus on the "{aspect_name}" dimension based on the provided description. Your score should reflect how well the stimulus meets this criterion, with {min_score} being the lowest possible score and {max_score} being the highest possible score. Please return in JSON format with only one field: "{aspect_name}" (integer score within the specified range {min_score}-{max_score}). """ try: total_aspects = len(properties) current_aspect = 0 for aspect_name, aspect_details in properties.items(): current_aspect += 1 if stop_event and stop_event.is_set(): print( f"Generation stopped by user while scoring {aspect_name}.") return {field: 0 for field in properties.keys()} if websocket_callback: websocket_callback( "scorer", f"Evaluating aspect {current_aspect}/{total_aspects}: {aspect_name}") # Extract min and max scores from aspect details min_score = aspect_details.get('minimum', 0) max_score = aspect_details.get('maximum', 10) description = aspect_details.get('description', aspect_name) # Create prompt for individual aspect prompt = individual_prompt_template.format( valid_stimulus=valid_stimulus, experiment_design=experiment_design, aspect_name=aspect_name, aspect_description=description, min_score=min_score, max_score=max_score ) # Create properties dict with single aspect (include all details for JSON schema) single_aspect = {aspect_name: { 'type': 'integer', 'description': description, 'minimum': min_score, 'maximum': max_score }} # Get model-specific default params and override temperature fixed_params = model_client.get_default_params() fixed_params["temperature"] = 0 result = model_client.generate_completion( prompt, single_aspect, fixed_params) print(f"Agent 3 Individual Scoring - {aspect_name}: {result}") if "error" in result: print( f"Agent 3 Individual API error for {aspect_name}: {result}") if websocket_callback: websocket_callback( "scorer", f"Error scoring aspect {aspect_name}: {result.get('error', 'Unknown error')}") scoring_results[aspect_name] = 0 continue # Extract the scoring result for this aspect if aspect_name in result: score = result[aspect_name] # Ensure score is within valid range if isinstance(score, (int, float)): score = max(min_score, min(max_score, int(score))) scoring_results[aspect_name] = score if websocket_callback: websocket_callback( "scorer", f"Aspect {aspect_name}: {score}/{max_score}") else: print( f"Warning: Invalid score for {aspect_name}, assuming 0") scoring_results[aspect_name] = 0 if websocket_callback: websocket_callback( "scorer", f"Aspect {aspect_name}: 0/{max_score} (invalid response)") else: print( f"Warning: {aspect_name} not found in result, assuming 0") scoring_results[aspect_name] = 0 if websocket_callback: websocket_callback( "scorer", f"Aspect {aspect_name}: 0/{max_score} (parsing error)") print("Agent 3 Individual Scoring - All Results:", scoring_results) if websocket_callback: total_score = sum(scoring_results.values()) max_possible = sum(aspect_details.get('maximum', 10) for aspect_details in properties.values()) websocket_callback( "scorer", f"Individual scoring completed! Total: {total_score}/{max_possible}") return scoring_results except (json.JSONDecodeError, KeyError, TypeError) as e: print(f"Error parsing individual scoring response: {e}") return {field: 0 for field in properties.keys()} except (RequestException, Timeout) as e: print(f"Network error in individual scoring: {e}") return {field: 0 for field in properties.keys()} # ====================== # 6. Main Flow Function # ====================== def generate_stimuli(settings): stop_event = settings['stop_event'] current_iteration = settings['current_iteration'] total_iterations = settings['total_iterations'] experiment_design = settings['experiment_design'] previous_stimuli = settings['previous_stimuli'] if settings['previous_stimuli'] else [ ] model_choice = settings.get('model_choice', 'GPT-4o') ablation = settings.get('ablation', { "use_agent_2": True, "use_agent_3": True }) repetition_count = 0 validation_fails = 0 # Get custom parameters for custom model custom_params = settings.get('params', None) # Get session_update_callback function and websocket_callback function session_update_callback = settings.get('session_update_callback') websocket_callback = settings.get('websocket_callback') # Ensure progress value is correctly initialized with current_iteration.get_lock(), total_iterations.get_lock(): current_iteration.value = 0 total_iterations.value = settings['iteration'] # Immediately send correct initial progress if session_update_callback: session_update_callback() # Check stop event at each critical point def check_stop(message="Generation stopped by user."): if stop_event.is_set(): print(message) if websocket_callback: websocket_callback("all", message) return True return False # Helper function to create partial result when error or stop occurs def create_partial_result(record_list, message, is_error=True): nonlocal total_iterations if len(record_list) > 0: df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice('0123456789abcdef') for _ in range(6)) suffix = "_partial" if is_error else "_stopped" suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}{suffix}.csv" df['generation_timestamp'] = timestamp df['batch_id'] = unique_id df['total_iterations'] = total_iterations.value df['stopped_by_user'] = not is_error df['error_occurred'] = is_error df['message'] = message df['completed_iterations'] = len(record_list) os.makedirs("outputs", exist_ok=True) suggested_filename = os.path.join("outputs", suggested_filename) return df, suggested_filename return None, None # Helper function to check stop and return partial data if available def check_stop_and_return(message="Generation stopped by user."): if stop_event.is_set(): print(message) if websocket_callback: websocket_callback("all", message) return True, create_partial_result(record_list, message, is_error=False) return False, (None, None) # Immediately check if stopped if check_stop("Generation stopped before starting."): return None, None record_list = [] rejected_stimuli_memory = [] agent_1_properties = settings.get('agent_1_properties', {}) print("Agent 1 Properties:", agent_1_properties) if websocket_callback: websocket_callback( "setup", f"Agent 1 Properties: {agent_1_properties}") if check_stop(): return None, None agent_2_properties = settings.get('agent_2_properties', {}) print("Agent 2 Properties:", agent_2_properties) if websocket_callback: websocket_callback( "setup", f"Agent 2 Properties: {agent_2_properties}") if check_stop(): return None, None agent_3_properties = settings.get('agent_3_properties', {}) print("Agent 3 Properties:", agent_3_properties) if websocket_callback: websocket_callback( "setup", f"Agent 3 Properties: {agent_3_properties}") if check_stop(): return None, None # Create model client using factory try: model_client = create_model_client(model_choice, settings) print(f"Using model: {model_choice}") if websocket_callback: websocket_callback("setup", f"Using model: {model_choice}") except Exception as e: error_msg = f"Failed to create model client: {str(e)}" print(error_msg) if websocket_callback: websocket_callback("setup", error_msg) return None, None if check_stop(): return None, None # Create a function specifically for updating progress def update_progress(completed_iterations): if check_stop(): return with current_iteration.get_lock(), total_iterations.get_lock(): current_value = min(completed_iterations, total_iterations.value) if current_value > current_iteration.value: current_iteration.value = current_value if session_update_callback: session_update_callback() # Get actual total iterations total_iter_value = total_iterations.value for iteration_num in range(total_iter_value): stopped, partial_result = check_stop_and_return() if stopped: return partial_result round_message = f"=== No. {iteration_num + 1} Round ===" print(round_message) if websocket_callback: websocket_callback("all", round_message) # Step 1: Generate stimulus current_retry_count = 0 # Retry counter for this iteration while True: stopped, partial_result = check_stop_and_return() if stopped: return partial_result try: stimuli = agent_1_generate_stimulus( model_client=model_client, experiment_design=experiment_design, previous_stimuli=previous_stimuli, properties=agent_1_properties, rejected_stimuli=rejected_stimuli_memory, prompt_template=AGENT_1_PROMPT_TEMPLATE, params=custom_params, stop_event=stop_event ) if isinstance(stimuli, dict) and stimuli.get('stimulus') == 'STOPPED': stopped, partial_result = check_stop_and_return( "Generation stopped after 'Generator'.") if stopped: return partial_result # Skip validation if Agent 1 returned an error if isinstance(stimuli, dict) and stimuli.get('stimulus') == 'ERROR/ERROR': print("Agent 1 returned ERROR, regenerating...") if websocket_callback: websocket_callback( "generator", "Generator returned ERROR, regenerating...") continue print("Agent 1 Output:", stimuli) if websocket_callback: websocket_callback( "generator", f"Generator's Output: {json.dumps(stimuli, indent=2)}") stopped, partial_result = check_stop_and_return( "Generation stopped after 'Generator'.") if stopped: return partial_result # Step 1.5: Check if stimulus already exists if check_stimulus_repetition(stimuli, previous_stimuli): repetition_count += 1 current_retry_count += 1 # Add retry limit to avoid infinite loops (but never accept duplicates) max_repetition_retries = 50 if current_retry_count > max_repetition_retries: error_msg = f"Failed to generate unique stimulus after {max_repetition_retries} attempts. Consider adjusting experiment design or reducing target count." print(error_msg) if websocket_callback: websocket_callback("generator", error_msg) # Return partial results instead of raising exception return create_partial_result(record_list, error_msg) if ablation["use_agent_2"]: print("Detected repeated stimulus, regenerating...") if websocket_callback: websocket_callback( "generator", "Detected repeated stimulus, regenerating...") continue else: print( "Ablation: Skipping Agent 2 (Repetition Check)") if websocket_callback: websocket_callback( "generator", "Ablation: Skipping Agent 2 (Repetition Check)") stopped, partial_result = check_stop_and_return() if stopped: return partial_result # Step 2: Validate stimulus # Check if individual validation is enabled individual_validation = settings.get( 'agent_2_individual_validation', False) if individual_validation: if websocket_callback: websocket_callback( "validator", f"Using individual validation mode - checking {len(agent_2_properties)} criteria...") validation_result = agent_2_validate_stimulus_individual( model_client=model_client, new_stimulus=stimuli, experiment_design=experiment_design, properties=agent_2_properties, stop_event=stop_event, websocket_callback=websocket_callback ) else: if websocket_callback: websocket_callback( "validator", "Using batch validation mode...") validation_result = agent_2_validate_stimulus( model_client=model_client, new_stimulus=stimuli, experiment_design=experiment_design, properties=agent_2_properties, prompt_template=AGENT_2_PROMPT_TEMPLATE, stop_event=stop_event ) if isinstance(validation_result, dict) and validation_result.get('error') == 'Stopped by user': stopped, partial_result = check_stop_and_return( "Generation stopped after 'Validator'.") if stopped: return partial_result print("Agent 2 Output:", validation_result) if websocket_callback: websocket_callback( "validator", f"Validator's Output: {json.dumps(validation_result, indent=2)}") stopped, partial_result = check_stop_and_return( "Generation stopped after 'Validator'.") if stopped: return partial_result # Check if there was an error first if 'error' in validation_result: print(f"Validation error: {validation_result['error']}") if websocket_callback: websocket_callback( "validator", f"Validation error: {validation_result['error']}") continue # Skip to next iteration # Check validation fields failed_fields = [ key for key, value in validation_result.items() if not value] if failed_fields: # Some fields failed validation validation_fails += 1 current_retry_count += 1 # Add to rejected memory (only if it's a valid stimulus, not an error) is_error_stimulus = ( isinstance(stimuli, dict) and stimuli.get('stimulus') in ['ERROR/ERROR', 'STOPPED'] ) if not is_error_stimulus: rejected_item = { "stimulus": stimuli, "validation_result": validation_result, "failed_fields": failed_fields } rejected_stimuli_memory.append(rejected_item) # Limit memory size to prevent unbounded growth MAX_REJECTED_MEMORY = 20 if len(rejected_stimuli_memory) > MAX_REJECTED_MEMORY: rejected_stimuli_memory = rejected_stimuli_memory[-MAX_REJECTED_MEMORY:] print( f"Failed validation for fields: {failed_fields}, regenerating...") if websocket_callback: websocket_callback( "validator", f"Failed validation for fields: {failed_fields}, regenerating...") # Check retry limit to avoid infinite loops max_retries = 50 if current_retry_count > max_retries: error_msg = f"Failed to generate valid stimulus after {max_retries} attempts. Consider adjusting validation criteria." print(error_msg) if websocket_callback: websocket_callback("validator", error_msg) # Return partial results instead of raising exception return create_partial_result(record_list, error_msg) if ablation["use_agent_2"]: continue # Regenerate else: print("Ablation: Skipping Agent 2 (Validation)") if websocket_callback: websocket_callback( "validator", "Ablation: Skipping Agent 2 (Validation)") update_progress(iteration_num + 1) break else: # All validations passed print("All validations passed, proceeding to next step...") if websocket_callback: websocket_callback( "validator", "All validations passed, proceeding to next step...") update_progress(iteration_num + 1) break except Exception as e: error_msg = f"Error in generation/validation step: {str(e)}" print(error_msg) if websocket_callback: websocket_callback("all", error_msg) if len(record_list) > 0: df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice( '0123456789abcdef') for _ in range(6)) suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}_error.csv" df['generation_timestamp'] = timestamp df['batch_id'] = unique_id df['total_iterations'] = total_iter_value df['error_occurred'] = True df['error_message'] = str(e) os.makedirs("outputs", exist_ok=True) suggested_filename = os.path.join( "outputs", f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}.csv") return df, suggested_filename else: raise e stopped, partial_result = check_stop_and_return( "Generation stopped after 'Validator'.") if stopped: return partial_result try: stopped, partial_result = check_stop_and_return( "Generation stopped before Scorer.") if stopped: return partial_result # Step 3: Score if ablation["use_agent_3"]: # Check if individual scoring is enabled individual_scoring = settings.get( 'agent_3_individual_scoring', False) if individual_scoring: if websocket_callback: websocket_callback( "scorer", f"Using individual scoring mode - evaluating {len(agent_3_properties)} aspects...") scores = agent_3_score_stimulus_individual( model_client=model_client, valid_stimulus=stimuli, experiment_design=experiment_design, properties=agent_3_properties, stop_event=stop_event, websocket_callback=websocket_callback ) else: if websocket_callback: websocket_callback( "scorer", "Using batch scoring mode...") scores = agent_3_score_stimulus( model_client=model_client, valid_stimulus=stimuli, experiment_design=experiment_design, properties=agent_3_properties, prompt_template=AGENT_3_PROMPT_TEMPLATE, stop_event=stop_event ) if isinstance(scores, dict) and all(v == 0 for v in scores.values()): if stop_event.is_set(): stopped, partial_result = check_stop_and_return( "Generation stopped after 'Scorer'.") if stopped: return partial_result print("Agent 3 Output:", scores) if websocket_callback: websocket_callback( "scorer", f"Scorer's Output: {json.dumps(scores, indent=2)}") stopped, partial_result = check_stop_and_return( "Generation stopped after 'Scorer'.") if stopped: return partial_result else: print("Ablation: Skipping Agent 3 (Scoring)") if websocket_callback: websocket_callback("scorer", "Ablation: Skipping Agent 3") # Save results record = { "stimulus_id": iteration_num + 1, "stimulus_content": stimuli, "repetition_count": repetition_count, "validation_fails": validation_fails, "validation_failure_reasons": validation_result } if ablation["use_agent_3"]: record.update(scores or {}) record_list.append(record) # Update previous_stimuli previous_stimuli.append(stimuli) # If some records have been generated, create intermediate results if (iteration_num + 1) % 5 == 0 or iteration_num + 1 == total_iter_value: temp_df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice('0123456789abcdef') for _ in range(6)) suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}.csv" temp_df['generation_timestamp'] = timestamp temp_df['batch_id'] = unique_id temp_df['total_iterations'] = total_iter_value if check_stop(): return temp_df, suggested_filename if iteration_num + 1 == total_iter_value: update_progress(total_iter_value) return temp_df, suggested_filename except Exception as e: error_msg = f"Error in scoring step: {str(e)}" print(error_msg) if websocket_callback: websocket_callback("all", error_msg) if len(record_list) > 0: df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice('0123456789abcdef') for _ in range(6)) suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}_error.csv" df['generation_timestamp'] = timestamp df['batch_id'] = unique_id df['total_iterations'] = total_iter_value df['error_occurred'] = True df['error_message'] = str(e) return df, suggested_filename else: raise e # Check again if stopped at final step if check_stop("Generation stopped at final step."): if len(record_list) > 0: df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice('0123456789abcdef') for _ in range(6)) suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}.csv" df['generation_timestamp'] = timestamp df['batch_id'] = unique_id df['total_iterations'] = total_iter_value df['error_occurred'] = False df['error_message'] = "" completion_msg = f"Data generation completed for session {session_id}" print(completion_msg) if websocket_callback: websocket_callback("all", completion_msg) return df, suggested_filename return None, None # Only generate DataFrame and return results after all iterations if len(record_list) > 0: update_progress(total_iter_value) df = pd.DataFrame(record_list) session_id = settings.get('session_id', 'default') timestamp = int(time.time()) unique_id = ''.join(random.choice('0123456789abcdef') for _ in range(6)) suggested_filename = f"experiment_stimuli_results_{session_id}_{timestamp}_{unique_id}.csv" df['generation_timestamp'] = timestamp df['batch_id'] = unique_id df['total_iterations'] = total_iter_value df['error_occurred'] = False df['error_message'] = "" completion_msg = f"Data generation completed for session {session_id}" print(completion_msg) if websocket_callback: websocket_callback("all", completion_msg) return df, suggested_filename else: print("No records generated.") if websocket_callback: websocket_callback("all", "No records generated.") return None, None # ====================== # 7. Legacy Support Function (maintain backward compatibility) # ====================== def custom_model_inference_handler(session_id, prompt, model, api_url, api_key, params=None): """Legacy function for backward compatibility""" try: client = CustomModelClient(api_url, api_key, model) result = client.generate_completion(prompt, {}, params) if "error" in result: return {'error': result["error"]}, 500 return {'response': json.dumps(result)}, 200 except Exception as e: return {'error': f'Unexpected error: {str(e)}'}, 500