Spaces:
Sleeping
Sleeping
Mask PII
Browse files- phishing_datasets.py +2 -1
- piiranha.py +65 -0
phishing_datasets.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
from datasets import load_dataset, Dataset
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
DATASET_NAME = os.getenv("DATASET_NAME")
|
| 6 |
|
|
@@ -12,7 +13,7 @@ def submit_entry(sender, message):
|
|
| 12 |
global df
|
| 13 |
|
| 14 |
sender = sender.strip().replace(" ", "") # Remove all spaces inside sender
|
| 15 |
-
message = message.strip()
|
| 16 |
|
| 17 |
# Check for duplicates
|
| 18 |
if ((df["sender"] == sender) & (df["message"] == message)).any():
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from datasets import load_dataset, Dataset
|
| 3 |
import os
|
| 4 |
+
from piiranha import mask_pii
|
| 5 |
|
| 6 |
DATASET_NAME = os.getenv("DATASET_NAME")
|
| 7 |
|
|
|
|
| 13 |
global df
|
| 14 |
|
| 15 |
sender = sender.strip().replace(" ", "") # Remove all spaces inside sender
|
| 16 |
+
message = mask_pii(message).strip()
|
| 17 |
|
| 18 |
# Check for duplicates
|
| 19 |
if ((df["sender"] == sender) & (df["message"] == message)).any():
|
piiranha.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 3 |
+
|
| 4 |
+
model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 7 |
+
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
model.to(device)
|
| 10 |
+
|
| 11 |
+
def mask_pii(text, aggregate_redaction=False):
|
| 12 |
+
# Tokenize input text
|
| 13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 14 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 15 |
+
|
| 16 |
+
# Get the model predictions
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = model(**inputs)
|
| 19 |
+
|
| 20 |
+
# Get the predicted labels
|
| 21 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
| 22 |
+
|
| 23 |
+
# Convert token predictions to word predictions
|
| 24 |
+
encoded_inputs = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
|
| 25 |
+
offset_mapping = encoded_inputs['offset_mapping']
|
| 26 |
+
|
| 27 |
+
masked_text = list(text)
|
| 28 |
+
is_redacting = False
|
| 29 |
+
redaction_start = 0
|
| 30 |
+
current_pii_type = ''
|
| 31 |
+
|
| 32 |
+
for i, (start, end) in enumerate(offset_mapping):
|
| 33 |
+
if start == end: # Special token
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
label = predictions[0][i].item()
|
| 37 |
+
if label != model.config.label2id['O']: # Non-O label
|
| 38 |
+
pii_type = model.config.id2label[label]
|
| 39 |
+
if not is_redacting:
|
| 40 |
+
is_redacting = True
|
| 41 |
+
redaction_start = start
|
| 42 |
+
current_pii_type = pii_type
|
| 43 |
+
elif not aggregate_redaction and pii_type != current_pii_type:
|
| 44 |
+
# End current redaction and start a new one
|
| 45 |
+
apply_redaction(masked_text, redaction_start, start, current_pii_type, aggregate_redaction)
|
| 46 |
+
redaction_start = start
|
| 47 |
+
current_pii_type = pii_type
|
| 48 |
+
else:
|
| 49 |
+
if is_redacting:
|
| 50 |
+
apply_redaction(masked_text, redaction_start, end, current_pii_type, aggregate_redaction)
|
| 51 |
+
is_redacting = False
|
| 52 |
+
|
| 53 |
+
# Handle case where PII is at the end of the text
|
| 54 |
+
if is_redacting:
|
| 55 |
+
apply_redaction(masked_text, redaction_start, len(masked_text), current_pii_type, aggregate_redaction)
|
| 56 |
+
|
| 57 |
+
return ''.join(masked_text)
|
| 58 |
+
|
| 59 |
+
def apply_redaction(masked_text, start, end, pii_type, aggregate_redaction):
|
| 60 |
+
for j in range(start, end):
|
| 61 |
+
masked_text[j] = ''
|
| 62 |
+
if aggregate_redaction:
|
| 63 |
+
masked_text[start] = '[redacted]'
|
| 64 |
+
else:
|
| 65 |
+
masked_text[start] = f'[{pii_type}]'
|