Update app.py
Browse files
app.py
CHANGED
|
@@ -8,46 +8,25 @@ import torch
|
|
| 8 |
from transformers import pipeline
|
| 9 |
import librosa
|
| 10 |
import gradio as gr
|
| 11 |
-
import requests
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
EMAIL = os.environ.get("Email")
|
| 15 |
-
PASSWD = os.environ.get("Password")
|
| 16 |
-
|
| 17 |
-
# Debug: Print credentials to verify they're being read
|
| 18 |
-
print("EMAIL from env:", EMAIL)
|
| 19 |
-
print("PASSWORD from env:", PASSWD)
|
| 20 |
-
|
| 21 |
-
# Directory to store cookies
|
| 22 |
cookie_path_dir = "./cookies/"
|
| 23 |
os.makedirs(cookie_path_dir, exist_ok=True)
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
try:
|
| 27 |
-
response = requests.get("https://huggingface.co/login", timeout=10)
|
| 28 |
-
print("Network test: Successfully reached https://huggingface.co/login, status code:", response.status_code)
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print("Network test failed:", str(e))
|
| 31 |
-
|
| 32 |
-
# Login to HugChat with detailed error handling
|
| 33 |
try:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
print("Login successful, cookies obtained.")
|
| 38 |
-
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
| 39 |
except Exception as e:
|
| 40 |
-
print(f"
|
| 41 |
-
print("Full traceback:")
|
| 42 |
-
import traceback
|
| 43 |
-
traceback.print_exc()
|
| 44 |
sys.exit(1)
|
| 45 |
|
| 46 |
# Model and device configuration for Whisper transcription
|
| 47 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
| 48 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 49 |
|
| 50 |
-
# Initialize Whisper pipeline
|
| 51 |
pipe = pipeline(
|
| 52 |
task="automatic-speech-recognition",
|
| 53 |
model=MODEL_NAME,
|
|
@@ -56,9 +35,6 @@ pipe = pipeline(
|
|
| 56 |
)
|
| 57 |
|
| 58 |
def transcribe_audio(audio_path):
|
| 59 |
-
"""
|
| 60 |
-
Transcribe a local audio file using the Whisper pipeline.
|
| 61 |
-
"""
|
| 62 |
try:
|
| 63 |
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 64 |
transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"]
|
|
@@ -67,9 +43,6 @@ def transcribe_audio(audio_path):
|
|
| 67 |
return f"Error processing audio: {e}"
|
| 68 |
|
| 69 |
def extract_metadata(file_name):
|
| 70 |
-
"""
|
| 71 |
-
Extract metadata from the file name.
|
| 72 |
-
"""
|
| 73 |
base = file_name.split(".")[0]
|
| 74 |
parts = base.split("_")
|
| 75 |
if len(parts) >= 3:
|
|
@@ -80,9 +53,6 @@ def extract_metadata(file_name):
|
|
| 80 |
return {"agent_username": "Unknown", "location": "Unknown"}
|
| 81 |
|
| 82 |
def process_audio(audio, file_name):
|
| 83 |
-
"""
|
| 84 |
-
Process the audio file and return Urdu transcription, English translation, and crops with diseases.
|
| 85 |
-
"""
|
| 86 |
urdu_text = transcribe_audio(audio)
|
| 87 |
if "Error" in urdu_text:
|
| 88 |
return json.dumps({"error": urdu_text})
|
|
@@ -180,7 +150,6 @@ def process_audio(audio, file_name):
|
|
| 180 |
|
| 181 |
return json.dumps(output)
|
| 182 |
|
| 183 |
-
# Gradio Interface
|
| 184 |
with gr.Blocks(title="Audio to Crop Disease API") as interface:
|
| 185 |
gr.Markdown("## Upload Audio to Get Urdu Transcription, English Translation, and Crop Diseases")
|
| 186 |
|
|
|
|
| 8 |
from transformers import pipeline
|
| 9 |
import librosa
|
| 10 |
import gradio as gr
|
| 11 |
+
import requests
|
| 12 |
|
| 13 |
+
# Directory to store/load cookies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
cookie_path_dir = "./cookies/"
|
| 15 |
os.makedirs(cookie_path_dir, exist_ok=True)
|
| 16 |
|
| 17 |
+
# Load pre-saved cookies instead of logging in
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
try:
|
| 19 |
+
print("Attempting to load cookies from:", cookie_path_dir)
|
| 20 |
+
chatbot = hugchat.ChatBot(cookie_path_dir=cookie_path_dir)
|
| 21 |
+
print("Cookies loaded successfully.")
|
|
|
|
|
|
|
| 22 |
except Exception as e:
|
| 23 |
+
print(f"Failed to load cookies: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 24 |
sys.exit(1)
|
| 25 |
|
| 26 |
# Model and device configuration for Whisper transcription
|
| 27 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
| 28 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 29 |
|
|
|
|
| 30 |
pipe = pipeline(
|
| 31 |
task="automatic-speech-recognition",
|
| 32 |
model=MODEL_NAME,
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
def transcribe_audio(audio_path):
|
|
|
|
|
|
|
|
|
|
| 38 |
try:
|
| 39 |
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
|
| 40 |
transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"]
|
|
|
|
| 43 |
return f"Error processing audio: {e}"
|
| 44 |
|
| 45 |
def extract_metadata(file_name):
|
|
|
|
|
|
|
|
|
|
| 46 |
base = file_name.split(".")[0]
|
| 47 |
parts = base.split("_")
|
| 48 |
if len(parts) >= 3:
|
|
|
|
| 53 |
return {"agent_username": "Unknown", "location": "Unknown"}
|
| 54 |
|
| 55 |
def process_audio(audio, file_name):
|
|
|
|
|
|
|
|
|
|
| 56 |
urdu_text = transcribe_audio(audio)
|
| 57 |
if "Error" in urdu_text:
|
| 58 |
return json.dumps({"error": urdu_text})
|
|
|
|
| 150 |
|
| 151 |
return json.dumps(output)
|
| 152 |
|
|
|
|
| 153 |
with gr.Blocks(title="Audio to Crop Disease API") as interface:
|
| 154 |
gr.Markdown("## Upload Audio to Get Urdu Transcription, English Translation, and Crop Diseases")
|
| 155 |
|