File size: 6,433 Bytes
7ba3a81
a840639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import google.generativeai as genai
from typing import List
from pathlib import Path
import fitz
import json
import os
import textwrap
from settings import Chunk, Settings


SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

# Output artifact locations (align with api.py expectations)
OUTPUT_CHUNKS_FILE = os.path.join(
    SCRIPT_DIR, "output_chunks.jsonl"
)  # already used in api.py
RAG_CONFIG_FILE = os.path.join(
    SCRIPT_DIR, "rag_prompt_config.jsonl"
)  # already used in api.py
# If you also want these in data/ instead, uncomment:
# OUTPUT_CHUNKS_FILE = os.path.join(DATA_DIR, "output_chunks.jsonl")
# RAG_CONFIG_FILE = os.path.join(DATA_DIR, "rag_prompt_config.jsonl")

# Example system / base prompts (edit as needed)
SYSTEM_PROMPT = {
    "role": "system",
    "content": "You are a helpful RAG assistant. Use only the provided context. If unsure, say you don't know.",
}
BASE_CHUNK = {
    "role": "base",
    "content": "Answer the user's query using only the contextual chunks below.",
}


def extract_pdf_text(filename: str) -> str:
    text = ""
    with fitz.open(filename) as doc:
        for page in doc:
            text += page.get_text()
    return text


def chunk_pdf(filename: str) -> List[Chunk]:
    client = genai.Client()
    text = extract_pdf_text(filename)
    # print(text)
    pdf_name = Path(filename).name

    prompt = f"""
    Split the following text into coherent chunks suitable for RAG.
    Each chunk should be 100-500 words.
    Do not cut mid-sentence, paragraph, or table.
    Preserve headings, bullet points, and tables.
    
    Return an array of JSON objects with this structure:
    {{
        "content": "<chunk text>",
        "source": "{pdf_name}",
        "tags": [],
        "type": "prg"
    }}
    Text:
    {text}
    """

    client = genai.Client()
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=prompt,
        config={
            "response_mime_type": "application/json",
            "response_schema": Settings.response_schema,
        },
    )

    chunks: List[Chunk] = response.parsed
    return chunks


def process_pdf_folder(folder_path):
    folder = Path(folder_path)
    pdfs = list(folder.glob("*.pdf"))
    all_chunks = []
    if not pdfs:
        print(f"No PDF files found in {folder_path}")
        return []
    else:
        pdfs.sort(key=lambda x: x.name)
        for pdf_file in pdfs:
            print(f"Processing PDF: {pdf_file.name}")
            chunks = chunk_pdf(filename=pdf_file)
            all_chunks.extend(chunks)
    return all_chunks


def make_prg_chunk(text, filename):
    return [
        {
            "content": text.strip(),
            "source": Path(filename).name,
            "tags": [],
            "type": "prg",
        }
    ]


def process_prg_folder(folder_path):
    folder = Path(folder_path)
    all_chunks = []
    prgs = list(folder.glob("*.prg"))
    if not prgs:
        print(f"No .prg files found in {folder_path}")
        return []
    prgs.sort(key=lambda x: x.name)
    for prg_file in prgs:
        print(f"Processing PRG: {prg_file.name}")
        text = prg_file.read_text(encoding="utf-8", errors="ignore")
        chunk = make_prg_chunk(text, prg_file.name)
        all_chunks.extend(chunk)
    return all_chunks


def read_source_files():
    """Load all .txt / .md files from SOURCE_DIR."""
    files = []
    for name in os.listdir(SOURCE_DIR):
        if name.lower().endswith((".txt", ".md")):
            path = os.path.join(SOURCE_DIR, name)
            with open(path, "r", encoding="utf-8") as f:
                files.append((name, f.read()))
    if not files:
        # Provide a fallback demo file if none exist
        demo_path = os.path.join(SOURCE_DIR, "demo.txt")
        demo_text = (
            "This is a demo knowledge file.\n"
            "Add your project or domain documentation as .txt or .md files here."
        )
        with open(demo_path, "w", encoding="utf-8") as f:
            f.write(demo_text)
        files.append(("demo.txt", demo_text))
    return files


def chunk_text(text: str, max_chars: int = 1200, overlap: int = 150):
    """Simple character-based chunking with overlap."""
    text = text.strip()
    if not text:
        return []
    chunks = []
    start = 0
    while start < len(text):
        end = min(len(text), start + max_chars)
        chunk = text[start:end]
        chunks.append(chunk.strip())
        if end >= len(text):
            break
        start = end - overlap
        if start < 0:
            start = 0
    return chunks


def build_chunks():
    """Create chunk objects suitable for embedding."""
    all_files = read_source_files()
    chunks = []
    idx = 0
    for filename, content in all_files:
        parts = chunk_text(content)
        for part in parts:
            chunks.append({"id": idx, "source": filename, "content": part})
            idx += 1
    return chunks


def write_jsonl(path: str, records):
    with open(path, "w", encoding="utf-8") as f:
        for r in records:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")


def write_config(path: str):
    """Write system + base prompt config file (list with single object)."""
    obj = [{"system_prompt": SYSTEM_PROMPT, "base_chunk": BASE_CHUNK}]
    with open(path, "w", encoding="utf-8") as f:
        json.dump(obj, f, ensure_ascii=False, indent=2)


def main():
    pdf_folder = r"C:\Users\kogut\Python\Assembler_rag\data\pdfs"
    prg_folder = r"C:\Users\kogut\Python\Assembler_rag\data\prg"
    # pdf_folder = Path(sys.argv[1]) if len(sys.argv) > 1 else Path("./data/pdfs")
    # prg_folder = Path(sys.argv[2]) if len(sys.argv) > 2 else None
    output_jsonl = "output_chunks.jsonl"

    all_chunks = process_pdf_folder(pdf_folder)

    if prg_folder:
        all_chunks += process_prg_folder(prg_folder)

    with open(output_jsonl, "w", encoding="utf-8") as f:
        json.dump(all_chunks, f, ensure_ascii=False, indent=2)

    print(f"Finished. {len(all_chunks)} total chunks written to {output_jsonl}")

    print(f"Generating RAG data from: {SOURCE_DIR}")
    chunks = build_chunks()
    print(f"Built {len(chunks)} chunks")
    write_jsonl(OUTPUT_CHUNKS_FILE, chunks)
    write_config(RAG_CONFIG_FILE)
    print(f"Wrote chunks to: {OUTPUT_CHUNKS_FILE}")
    print(f"Wrote config to: {RAG_CONFIG_FILE}")
    print("Done.")


if __name__ == "__main__":
    main()