rag_chat_ / generate_rag_data.py
mryt66
Initial commit
a840639
raw
history blame
6.66 kB
from google import genai
from typing import List
from pathlib import Path
import fitz
import json
import os
import textwrap
from settings import Chunk, Settings
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(SCRIPT_DIR, "data")
os.makedirs(DATA_DIR, exist_ok=True)
# Input: put your raw source files (txt/markdown) inside ./data/source
SOURCE_DIR = os.path.join(DATA_DIR, "source")
os.makedirs(SOURCE_DIR, exist_ok=True)
# Output artifact locations (align with api.py expectations)
OUTPUT_CHUNKS_FILE = os.path.join(
SCRIPT_DIR, "output_chunks.jsonl"
) # already used in api.py
RAG_CONFIG_FILE = os.path.join(
SCRIPT_DIR, "rag_prompt_config.jsonl"
) # already used in api.py
# If you also want these in data/ instead, uncomment:
# OUTPUT_CHUNKS_FILE = os.path.join(DATA_DIR, "output_chunks.jsonl")
# RAG_CONFIG_FILE = os.path.join(DATA_DIR, "rag_prompt_config.jsonl")
# Example system / base prompts (edit as needed)
SYSTEM_PROMPT = {
"role": "system",
"content": "You are a helpful RAG assistant. Use only the provided context. If unsure, say you don't know.",
}
BASE_CHUNK = {
"role": "base",
"content": "Answer the user's query using only the contextual chunks below.",
}
def extract_pdf_text(filename: str) -> str:
text = ""
with fitz.open(filename) as doc:
for page in doc:
text += page.get_text()
return text
def chunk_pdf(filename: str) -> List[Chunk]:
client = genai.Client()
text = extract_pdf_text(filename)
# print(text)
pdf_name = Path(filename).name
prompt = f"""
Split the following text into coherent chunks suitable for RAG.
Each chunk should be 100-500 words.
Do not cut mid-sentence, paragraph, or table.
Preserve headings, bullet points, and tables.
Return an array of JSON objects with this structure:
{{
"content": "<chunk text>",
"source": "{pdf_name}",
"tags": [],
"type": "prg"
}}
Text:
{text}
"""
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_schema": Settings.response_schema,
},
)
chunks: List[Chunk] = response.parsed
return chunks
def process_pdf_folder(folder_path):
folder = Path(folder_path)
pdfs = list(folder.glob("*.pdf"))
all_chunks = []
if not pdfs:
print(f"No PDF files found in {folder_path}")
return []
else:
pdfs.sort(key=lambda x: x.name)
for pdf_file in pdfs:
print(f"Processing PDF: {pdf_file.name}")
chunks = chunk_pdf(filename=pdf_file)
all_chunks.extend(chunks)
return all_chunks
def make_prg_chunk(text, filename):
return [
{
"content": text.strip(),
"source": Path(filename).name,
"tags": [],
"type": "prg",
}
]
def process_prg_folder(folder_path):
folder = Path(folder_path)
all_chunks = []
prgs = list(folder.glob("*.prg"))
if not prgs:
print(f"No .prg files found in {folder_path}")
return []
prgs.sort(key=lambda x: x.name)
for prg_file in prgs:
print(f"Processing PRG: {prg_file.name}")
text = prg_file.read_text(encoding="utf-8", errors="ignore")
chunk = make_prg_chunk(text, prg_file.name)
all_chunks.extend(chunk)
return all_chunks
def read_source_files():
"""Load all .txt / .md files from SOURCE_DIR."""
files = []
for name in os.listdir(SOURCE_DIR):
if name.lower().endswith((".txt", ".md")):
path = os.path.join(SOURCE_DIR, name)
with open(path, "r", encoding="utf-8") as f:
files.append((name, f.read()))
if not files:
# Provide a fallback demo file if none exist
demo_path = os.path.join(SOURCE_DIR, "demo.txt")
demo_text = (
"This is a demo knowledge file.\n"
"Add your project or domain documentation as .txt or .md files here."
)
with open(demo_path, "w", encoding="utf-8") as f:
f.write(demo_text)
files.append(("demo.txt", demo_text))
return files
def chunk_text(text: str, max_chars: int = 1200, overlap: int = 150):
"""Simple character-based chunking with overlap."""
text = text.strip()
if not text:
return []
chunks = []
start = 0
while start < len(text):
end = min(len(text), start + max_chars)
chunk = text[start:end]
chunks.append(chunk.strip())
if end >= len(text):
break
start = end - overlap
if start < 0:
start = 0
return chunks
def build_chunks():
"""Create chunk objects suitable for embedding."""
all_files = read_source_files()
chunks = []
idx = 0
for filename, content in all_files:
parts = chunk_text(content)
for part in parts:
chunks.append({"id": idx, "source": filename, "content": part})
idx += 1
return chunks
def write_jsonl(path: str, records):
with open(path, "w", encoding="utf-8") as f:
for r in records:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
def write_config(path: str):
"""Write system + base prompt config file (list with single object)."""
obj = [{"system_prompt": SYSTEM_PROMPT, "base_chunk": BASE_CHUNK}]
with open(path, "w", encoding="utf-8") as f:
json.dump(obj, f, ensure_ascii=False, indent=2)
def main():
pdf_folder = r"C:\Users\kogut\Python\Assembler_rag\data\pdfs"
prg_folder = r"C:\Users\kogut\Python\Assembler_rag\data\prg"
# pdf_folder = Path(sys.argv[1]) if len(sys.argv) > 1 else Path("./data/pdfs")
# prg_folder = Path(sys.argv[2]) if len(sys.argv) > 2 else None
output_jsonl = "output_chunks.jsonl"
all_chunks = process_pdf_folder(pdf_folder)
if prg_folder:
all_chunks += process_prg_folder(prg_folder)
with open(output_jsonl, "w", encoding="utf-8") as f:
json.dump(all_chunks, f, ensure_ascii=False, indent=2)
print(f"Finished. {len(all_chunks)} total chunks written to {output_jsonl}")
print(f"Generating RAG data from: {SOURCE_DIR}")
chunks = build_chunks()
print(f"Built {len(chunks)} chunks")
write_jsonl(OUTPUT_CHUNKS_FILE, chunks)
write_config(RAG_CONFIG_FILE)
print(f"Wrote chunks to: {OUTPUT_CHUNKS_FILE}")
print(f"Wrote config to: {RAG_CONFIG_FILE}")
print("Done.")
if __name__ == "__main__":
main()