maxorange commited on
Commit
bdba2ef
·
verified ·
1 Parent(s): 6d1d081

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +2 -0
  2. app.py +153 -0
  3. isnet.pth +3 -0
  4. robot.png +3 -0
  5. ship.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ robot.png filter=lfs diff=lfs merge=lfs -text
37
+ ship.png filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import os
4
+ from PIL import Image
5
+ import numpy as np
6
+ import torch
7
+ from torch.autograd import Variable
8
+ from torchvision import transforms
9
+ import torch.nn.functional as F
10
+ import gdown
11
+ import matplotlib.pyplot as plt
12
+ import warnings
13
+ warnings.filterwarnings("ignore")
14
+
15
+ os.system("git clone https://github.com/xuebinqin/DIS")
16
+ os.system("mv DIS/IS-Net/* .")
17
+
18
+ # project imports
19
+ from data_loader_cache import normalize, im_reader, im_preprocess
20
+ from models import *
21
+
22
+ #Helpers
23
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
24
+
25
+ # Download official weights
26
+ if not os.path.exists("saved_models"):
27
+ os.mkdir("saved_models")
28
+ os.system("mv isnet.pth saved_models/")
29
+
30
+ class GOSNormalize(object):
31
+ '''
32
+ Normalize the Image using torch.transforms
33
+ '''
34
+ def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
35
+ self.mean = mean
36
+ self.std = std
37
+
38
+ def __call__(self,image):
39
+ image = normalize(image,self.mean,self.std)
40
+ return image
41
+
42
+
43
+ transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
44
+
45
+ def load_image(im_path, hypar):
46
+ im = im_reader(im_path)
47
+ im, im_shp = im_preprocess(im, hypar["cache_size"])
48
+ im = torch.divide(im,255.0)
49
+ shape = torch.from_numpy(np.array(im_shp))
50
+ return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
51
+
52
+
53
+ def build_model(hypar,device):
54
+ net = hypar["model"]#GOSNETINC(3,1)
55
+
56
+ # convert to half precision
57
+ if(hypar["model_digit"]=="half"):
58
+ net.half()
59
+ for layer in net.modules():
60
+ if isinstance(layer, nn.BatchNorm2d):
61
+ layer.float()
62
+
63
+ net.to(device)
64
+
65
+ if(hypar["restore_model"]!=""):
66
+ net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
67
+ net.to(device)
68
+ net.eval()
69
+ return net
70
+
71
+
72
+ def predict(net, inputs_val, shapes_val, hypar, device):
73
+ '''
74
+ Given an Image, predict the mask
75
+ '''
76
+ net.eval()
77
+
78
+ if(hypar["model_digit"]=="full"):
79
+ inputs_val = inputs_val.type(torch.FloatTensor)
80
+ else:
81
+ inputs_val = inputs_val.type(torch.HalfTensor)
82
+
83
+
84
+ inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
85
+
86
+ ds_val = net(inputs_val_v)[0] # list of 6 results
87
+
88
+ pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
89
+
90
+ ## recover the prediction spatial size to the orignal image size
91
+ pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
92
+
93
+ ma = torch.max(pred_val)
94
+ mi = torch.min(pred_val)
95
+ pred_val = (pred_val-mi)/(ma-mi) # max = 1
96
+
97
+ if device == 'cuda': torch.cuda.empty_cache()
98
+ return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
99
+
100
+ # Set Parameters
101
+ hypar = {} # paramters for inferencing
102
+
103
+
104
+ hypar["model_path"] ="./saved_models" ## load trained weights from this path
105
+ hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
106
+ hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
107
+
108
+ ## choose floating point accuracy --
109
+ hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
110
+ hypar["seed"] = 0
111
+
112
+ hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
113
+
114
+ ## data augmentation parameters ---
115
+ hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
116
+ hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
117
+
118
+ hypar["model"] = ISNetDIS()
119
+
120
+ # Build Model
121
+ net = build_model(hypar, device)
122
+
123
+
124
+ def inference(image):
125
+ image_path = image
126
+
127
+ image_tensor, orig_size = load_image(image_path, hypar)
128
+ mask = predict(net, image_tensor, orig_size, hypar, device)
129
+
130
+ pil_mask = Image.fromarray(mask).convert('L')
131
+ im_rgb = Image.open(image).convert("RGB")
132
+
133
+ im_rgba = im_rgb.copy()
134
+ im_rgba.putalpha(pil_mask)
135
+
136
+ return [im_rgba, pil_mask]
137
+
138
+
139
+ title = "Highly Accurate Dichotomous Image Segmentation"
140
+ description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.<br>GitHub: https://github.com/xuebinqin/DIS<br>Telegram bot: https://t.me/restoration_photo_bot<br>[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
141
+ article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"
142
+
143
+ interface = gr.Interface(
144
+ fn=inference,
145
+ inputs=gr.Image(type='filepath'),
146
+ outputs=gr.Gallery(format="png"),
147
+ examples=[['robot.png'], ['ship.png']],
148
+ title=title,
149
+ description=description,
150
+ article=article,
151
+ flagging_mode="never",
152
+ cache_mode="lazy",
153
+ ).queue().launch(show_api=True, show_error=True)
isnet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea0889743a78391b48d6b7c40b4def963ee329cb10934c75aa32481dc5af9c61
3
+ size 176597693
robot.png ADDED

Git LFS Details

  • SHA256: f2c1f7f0da9ec158a9a417198944afc378eed47a4499fb739288e884484384ef
  • Pointer size: 131 Bytes
  • Size of remote file: 818 kB
ship.png ADDED

Git LFS Details

  • SHA256: fee77596bad08603c301088e62ff5ae763caa7bcdb53ce7fe3e23ff40dabcf16
  • Pointer size: 131 Bytes
  • Size of remote file: 834 kB