Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,357 Bytes
56cfa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
#!/usr/bin/env python3
import argparse
import json
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import torch
import torchaudio
from torchaudio import load as ta_load
from torchaudio.functional import resample as ta_resample
from zcodec.models import WavVAE
# -------------------------
# Data structures
# -------------------------
@dataclass
class WavVaeSpec:
name: str
wavvae_dir: str
# -------------------------
# Utilities
# -------------------------
def load_json_if_exists(path: Path) -> Optional[Dict[str, Any]]:
if path.is_file():
try:
return json.load(path.open("r", encoding="utf-8"))
except Exception:
return None
return None
def read_config_any(checkpoint_dir: str) -> Dict[str, Any]:
cand = [
Path(checkpoint_dir) / "config.json",
Path(checkpoint_dir) / "model_config.json",
Path(checkpoint_dir) / "config.yaml", # shown as path only
]
for p in cand:
if p.exists():
if p.suffix == ".json":
j = load_json_if_exists(p)
if j is not None:
return j
else:
return {"_config_file": str(p)}
return {}
def sanitize_name(s: str) -> str:
return "".join(c if c.isalnum() or c in "-_." else "_" for c in s)
def ensure_mono_and_resample(
wav: torch.Tensor, sr: int, target_sr: int
) -> Tuple[torch.Tensor, int]:
if wav.ndim != 2:
raise ValueError(f"Expected (C,T), got {tuple(wav.shape)}")
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sr != target_sr:
wav = ta_resample(wav, sr, target_sr)
sr = target_sr
return wav.to(torch.float32), sr
def save_wav(path: Path, wav: torch.Tensor, sr: int):
path.parent.mkdir(parents=True, exist_ok=True)
if wav.ndim == 1:
wav = wav.unsqueeze(0)
wav = wav.clamp(-1, 1).contiguous().cpu()
torchaudio.save(
str(path), wav, sample_rate=sr, encoding="PCM_S", bits_per_sample=16
)
def read_audio_manifest(txt_path: str) -> List[Path]:
lines = Path(txt_path).read_text(encoding="utf-8").splitlines()
files = [
Path(l.strip()) for l in lines if l.strip() and not l.strip().startswith("#")
]
return files
def html_escape(s: str) -> str:
return (
s.replace("&", "&")
.replace("<", "<")
.replace(">", ">")
.replace('"', """)
.replace("'", "'")
)
def make_html(
output_dir: Path,
audio_files: List[Path],
specs: List[WavVaeSpec],
sr_by_model: Dict[str, int],
wavvae_cfg: Dict[str, Dict[str, Any]],
) -> str:
def player(src_rel: str) -> str:
return f'<audio controls preload="none" src="{html_escape(src_rel)}"></audio>'
# cards
cards = []
for s in specs:
cfg = wavvae_cfg.get(s.name, {})
cfg_short = json.dumps(cfg if cfg else {"_": "no JSON config found"}, indent=2)[
:1200
]
card = f"""
<div class="model-card">
<h3>{html_escape(s.name)}</h3>
<p><b>Sample rate</b>: {sr_by_model.get(s.name, "N/A")} Hz</p>
<details><summary>WavVAE config</summary><pre>{html_escape(cfg_short)}</pre></details>
</div>
"""
cards.append(card)
css = """
body { font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, sans-serif; padding: 20px; }
.cards { display: grid; grid-template-columns: repeat(auto-fill, minmax(320px, 1fr)); gap: 12px; margin-bottom: 18px; }
.model-card { border: 1px solid #ddd; border-radius: 12px; padding: 12px; }
table { border-collapse: collapse; width: 100%; }
th, td { border: 1px solid #eee; padding: 8px; vertical-align: top; }
th { background: #fafafa; position: sticky; top: 0; }
audio { width: 260px; }
"""
th = "<th>Input</th><th>Original</th>" + "".join(
f"<th>{html_escape(s.name)}</th>" for s in specs
)
rows = []
for af in audio_files:
base = af.stem
orig_rel = f"original/{html_escape(af.name)}"
tds = [f"<td>{html_escape(base)}</td>", f"<td>{player(orig_rel)}</td>"]
for s in specs:
rec_rel = f"recon/{html_escape(s.name)}/{html_escape(base)}.wav"
tds.append(f"<td>{player(rec_rel)}</td>")
rows.append("<tr>" + "".join(tds) + "</tr>")
html = f"""<!doctype html>
<html>
<head><meta charset="utf-8"/><title>WavVAE Comparison</title><style>{css}</style></head>
<body>
<h1>WavVAE Comparison</h1>
<div class="cards">{"".join(cards)}</div>
<table>
<thead><tr>{th}</tr></thead>
<tbody>{"".join(rows)}</tbody>
</table>
</body>
</html>
"""
out = output_dir / "index.html"
out.write_text(html, encoding="utf-8")
return str(out)
# -------------------------
# Core
# -------------------------
@torch.inference_mode()
def reconstruct_wavvae(
wav_mono: torch.Tensor, wavvae: WavVAE, device: str
) -> torch.Tensor:
x = wav_mono.to(device) # (1,T)
z = wavvae.encode(x)
wav_hat = wavvae.decode(z) # (1,1,T)
return wav_hat.squeeze(0).squeeze(0).detach()
def parse_models_manifest(path: str) -> List[WavVaeSpec]:
"""
JSON list of:
{"name": "...", "wavvae": "/path/to/WavVAE_dir"}
"""
raw = json.loads(Path(path).read_text(encoding="utf-8"))
specs = []
for it in raw:
specs.append(WavVaeSpec(name=it["name"], wavvae_dir=it["wavvae"]))
return specs
def main():
ap = argparse.ArgumentParser(
description="Compare WavVAE checkpoints and generate a static HTML page."
)
ap.add_argument("--models", required=True, help="JSON manifest of WavVAE models.")
ap.add_argument(
"--audio_manifest", required=True, help="TXT file: one audio path per line."
)
ap.add_argument("--out", default="compare_wavvae_out")
ap.add_argument("--device", default="cuda")
ap.add_argument("--force", action="store_true")
args = ap.parse_args()
device = "cuda" if args.device == "cuda" and torch.cuda.is_available() else "cpu"
out_dir = Path(args.out)
(out_dir / "original").mkdir(parents=True, exist_ok=True)
recon_dir = out_dir / "recon"
recon_dir.mkdir(parents=True, exist_ok=True)
specs = parse_models_manifest(args.models)
if not specs:
print("No models.", file=sys.stderr)
sys.exit(1)
# load models
wavvae_by_name: Dict[str, WavVAE] = {}
sr_by_model: Dict[str, int] = {}
wavvae_cfg: Dict[str, Dict[str, Any]] = {}
for s in specs:
print(f"[Load] {s.name}")
w = WavVAE.from_pretrained_local(s.wavvae_dir).to(device)
wavvae_by_name[s.name] = w
sr_by_model[s.name] = int(getattr(w, "sampling_rate", 24000))
wavvae_cfg[s.name] = read_config_any(s.wavvae_dir)
audio_paths = read_audio_manifest(args.audio_manifest)
# normalize originals to wav+mono (browser-friendly); keep native sr for original column
actual_audio = []
for ap in audio_paths:
if not ap.exists():
print(f"[Skip missing] {ap}", file=sys.stderr)
continue
wav, sr = ta_load(str(ap))
wav_mono, sr = ensure_mono_and_resample(wav, sr, sr)
out_orig = out_dir / "original" / (ap.stem + ".wav")
if args.force or not out_orig.exists():
save_wav(out_orig, wav_mono, sr)
actual_audio.append(out_orig)
# recon per model
for out_orig in actual_audio:
wav0, sr0 = ta_load(str(out_orig))
if wav0.size(0) > 1:
wav0 = wav0.mean(dim=0, keepdim=True)
for s in specs:
target_sr = sr_by_model[s.name]
wav_in = ta_resample(wav0, sr0, target_sr) if sr0 != target_sr else wav0
out_path = recon_dir / s.name / f"{sanitize_name(out_orig.stem)}.wav"
if args.force or not out_path.exists():
print(f"[Reconstruct] {s.name} ← {out_orig.name}")
wav_hat = reconstruct_wavvae(wav_in, wavvae_by_name[s.name], device)
save_wav(out_path, wav_hat, target_sr)
html_path = make_html(out_dir, actual_audio, specs, sr_by_model, wavvae_cfg)
print(f"Done. Open: {html_path}")
if __name__ == "__main__":
main()
|