import argparse import json from pathlib import Path import nemo.collections.asr as nemo_asr import torch import yaml from torchaudio import load from torchaudio.functional import resample from tqdm import tqdm def load_config(config_path): with open(config_path, "r") as f: return yaml.safe_load(f) def transcribe(audio: torch.Tensor, asr_model) -> str: audio = audio.cpu().numpy(force=True) with torch.inference_mode(): return asr_model.transcribe([audio[0]])[0].text def main(args): config = load_config(args.config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load ASR model asr_model = nemo_asr.models.ASRModel.from_pretrained( model_name=config.get("asr_model", "nvidia/parakeet-tdt-0.6b-v2") ) # Read file list with open(config["file_list"], "r") as f: wav_files = [line.strip() for line in f if line.strip()] results = [] for wav_path in tqdm(wav_files, desc="Transcribing"): wav, sr = load(wav_path) wav = resample(wav, orig_freq=sr, new_freq=16000).to(device) transcript = transcribe(wav, asr_model) results.append({"file": wav_path, "transcript": transcript}) # Save output out_path = Path(config.get("output_jsonl", "asr_transcripts.jsonl")) with out_path.open("w") as f: for entry in results: f.write(json.dumps(entry, ensure_ascii=False) + "\n") print(f"\nSaved {len(results)} transcripts to {out_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True, help="Path to YAML config") args = parser.parse_args() main(args)