Spaces:
Running
on
Zero
Running
on
Zero
Harmony attempt #1 blended with simple formatting
Browse files
app.py
CHANGED
|
@@ -4,6 +4,13 @@ from threading import Thread
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
model_id = "openai/gpt-oss-20b"
|
| 9 |
|
|
@@ -12,7 +19,9 @@ pipe = pipeline(
|
|
| 12 |
model=model_id,
|
| 13 |
torch_dtype="auto",
|
| 14 |
device_map="auto",
|
|
|
|
| 15 |
)
|
|
|
|
| 16 |
def format_conversation_history(chat_history):
|
| 17 |
messages = []
|
| 18 |
for item in chat_history:
|
|
@@ -22,6 +31,34 @@ def format_conversation_history(chat_history):
|
|
| 22 |
content = content[0]["text"] if content and "text" in content[0] else str(content)
|
| 23 |
messages.append({"role": role, "content": content})
|
| 24 |
return messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
@spaces.GPU()
|
| 27 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
|
@@ -29,7 +66,12 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
| 29 |
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
| 30 |
processed_history = format_conversation_history(chat_history)
|
| 31 |
messages = system_message + processed_history + [new_message]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 33 |
generation_kwargs = {
|
| 34 |
"max_new_tokens": max_new_tokens,
|
| 35 |
"do_sample": True,
|
|
@@ -37,18 +79,19 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
| 37 |
"top_p": top_p,
|
| 38 |
"top_k": top_k,
|
| 39 |
"repetition_penalty": repetition_penalty,
|
| 40 |
-
"streamer": streamer
|
|
|
|
| 41 |
}
|
| 42 |
-
thread = Thread(target=pipe, args=(
|
| 43 |
thread.start()
|
| 44 |
-
|
| 45 |
thinking = ""
|
| 46 |
final = ""
|
| 47 |
started_final = False
|
| 48 |
for chunk in streamer:
|
| 49 |
if not started_final:
|
| 50 |
if "assistantfinal" in chunk.lower():
|
| 51 |
-
split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
|
| 52 |
thinking += split_parts[0]
|
| 53 |
final += split_parts[1]
|
| 54 |
started_final = True
|
|
@@ -56,7 +99,7 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
| 56 |
thinking += chunk
|
| 57 |
else:
|
| 58 |
final += chunk
|
| 59 |
-
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
|
| 60 |
clean_final = final.strip()
|
| 61 |
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
| 62 |
yield formatted
|
|
@@ -78,8 +121,9 @@ demo = gr.ChatInterface(
|
|
| 78 |
],
|
| 79 |
examples=[
|
| 80 |
[{"text": "Explain Newton laws clearly and concisely"}],
|
| 81 |
-
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
|
| 82 |
[{"text": "What are the benefits of open weight AI models"}],
|
|
|
|
|
|
|
| 83 |
],
|
| 84 |
cache_examples=False,
|
| 85 |
type="messages",
|
|
@@ -96,4 +140,4 @@ Give it a couple of seconds to start. You can adjust reasoning level in the syst
|
|
| 96 |
)
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
-
demo.launch(
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
import re
|
| 7 |
+
from openai_harmony import (
|
| 8 |
+
load_harmony_encoding,
|
| 9 |
+
HarmonyEncodingName,
|
| 10 |
+
Role,
|
| 11 |
+
Message,
|
| 12 |
+
Conversation,
|
| 13 |
+
)
|
| 14 |
|
| 15 |
model_id = "openai/gpt-oss-20b"
|
| 16 |
|
|
|
|
| 19 |
model=model_id,
|
| 20 |
torch_dtype="auto",
|
| 21 |
device_map="auto",
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
)
|
| 24 |
+
enc = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
| 25 |
def format_conversation_history(chat_history):
|
| 26 |
messages = []
|
| 27 |
for item in chat_history:
|
|
|
|
| 31 |
content = content[0]["text"] if content and "text" in content[0] else str(content)
|
| 32 |
messages.append({"role": role, "content": content})
|
| 33 |
return messages
|
| 34 |
+
#OpenAI's harmony format
|
| 35 |
+
def build_harmony_conversation_from_messages(messages):
|
| 36 |
+
harmony_messages = []
|
| 37 |
+
for m in messages:
|
| 38 |
+
role = m["role"].lower()
|
| 39 |
+
content = m["content"]
|
| 40 |
+
if role == "system":
|
| 41 |
+
harmony_messages.append(
|
| 42 |
+
Message.from_role_and_content(
|
| 43 |
+
Role.SYSTEM,
|
| 44 |
+
content,
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
elif role == "user":
|
| 48 |
+
harmony_messages.append(
|
| 49 |
+
Message.from_role_and_content(
|
| 50 |
+
Role.USER,
|
| 51 |
+
content,
|
| 52 |
+
)
|
| 53 |
+
)
|
| 54 |
+
elif role == "assistant":
|
| 55 |
+
harmony_messages.append(
|
| 56 |
+
Message.from_role_and_content(
|
| 57 |
+
Role.ASSISTANT,
|
| 58 |
+
content,
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
return Conversation.from_messages(harmony_messages)
|
| 62 |
|
| 63 |
@spaces.GPU()
|
| 64 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
|
|
|
| 66 |
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
| 67 |
processed_history = format_conversation_history(chat_history)
|
| 68 |
messages = system_message + processed_history + [new_message]
|
| 69 |
+
conversation = build_harmony_conversation_from_messages(messages)
|
| 70 |
+
prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT)
|
| 71 |
+
prompt_text = pipe.tokenizer.decode(prompt_tokens, skip_special_tokens=False)
|
| 72 |
+
|
| 73 |
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
generation_kwargs = {
|
| 76 |
"max_new_tokens": max_new_tokens,
|
| 77 |
"do_sample": True,
|
|
|
|
| 79 |
"top_p": top_p,
|
| 80 |
"top_k": top_k,
|
| 81 |
"repetition_penalty": repetition_penalty,
|
| 82 |
+
"streamer": streamer,
|
| 83 |
+
"return_full_text": False,
|
| 84 |
}
|
| 85 |
+
thread = Thread(target=pipe, args=(prompt_text,), kwargs=generation_kwargs)
|
| 86 |
thread.start()
|
| 87 |
+
|
| 88 |
thinking = ""
|
| 89 |
final = ""
|
| 90 |
started_final = False
|
| 91 |
for chunk in streamer:
|
| 92 |
if not started_final:
|
| 93 |
if "assistantfinal" in chunk.lower():
|
| 94 |
+
split_parts = re.split(r'(?i)assistantfinal', chunk, maxsplit=1)
|
| 95 |
thinking += split_parts[0]
|
| 96 |
final += split_parts[1]
|
| 97 |
started_final = True
|
|
|
|
| 99 |
thinking += chunk
|
| 100 |
else:
|
| 101 |
final += chunk
|
| 102 |
+
clean_thinking = re.sub(r'^analysis\s*', '', thinking, flags=re.I).strip()
|
| 103 |
clean_final = final.strip()
|
| 104 |
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
| 105 |
yield formatted
|
|
|
|
| 121 |
],
|
| 122 |
examples=[
|
| 123 |
[{"text": "Explain Newton laws clearly and concisely"}],
|
|
|
|
| 124 |
[{"text": "What are the benefits of open weight AI models"}],
|
| 125 |
+
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
|
| 126 |
+
|
| 127 |
],
|
| 128 |
cache_examples=False,
|
| 129 |
type="messages",
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
+
demo.launch()
|